We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Random effects meta-analysis model is an important tool for integrating results from multiple independent studies. However, the standard model is based on the assumption of normal distributions for both random effects and within-study errors, making it susceptible to outlying studies. Although robust modeling using the t distribution is an appealing idea, the existing work, that explores the use of the t distribution only for random effects, involves complicated numerical integration and numerical optimization. In this article, a novel robust meta-analysis model using the t distribution is proposed (tMeta). The novelty is that the marginal distribution of the effect size in tMeta follows the t distribution, enabling that tMeta can simultaneously accommodate and detect outlying studies in a simple and adaptive manner. A simple and fast EM-type algorithm is developed for maximum likelihood estimation. Due to the mathematical tractability of the t distribution, tMeta frees from numerical integration and allows for efficient optimization. Experiments on real data demonstrate that tMeta is compared favorably with related competitors in situations involving mild outliers. Moreover, in the presence of gross outliers, while related competitors may fail, tMeta continues to perform consistently and robustly.
Lactylation, a new epigenetic modification, is an important way in which lactate exerts physiological functions. There is a close relationship between increased lactylations caused by lactate and glycolysis, which can interact and play a role in disease through lactate as an intermediate mediator. Current research on lactylations has focused on histone lactylation, but non-histone lactylation also has greater research potential. Due to the ubiquity of lactate modifications in mammalian cells, an increasing number of studies have found that lactate modifications play important roles in tumour cell metabolism, gene transcription and immunity.
Methods
A systematic literature search was carried out using search key terms and synonyms. Full-paper screening was performed based on specific inclusion and exclusion criteria.
Results
Many literatures have reported that the lactylation of protein plays an important role in human diseases and is involved in the occurrence and development of human diseases.
Conclusions
This article summary the correlation between lactylation and glycolysis, histones and non-histone proteins; the relationship between lactonation modifications and tumour development; and the current existence of lactylation-related inhibitors, with a view to provide new basic research ideas and clinical therapeutic tools for lactylation-related diseases.
Depressive disorders pose a significant global public health challenge, yet evidence on their burden remains insufficient.
Aims
To report the global, regional and national burden of depressive disorders and their attributable risk factors from 1990 to 2021.
Methods
Data from the Global Burden of Disease 2021 were analyzed for 204 countries and territories from 1990 to 2021. We explored the age-standardised incidence, prevalence and disability-adjusted life years (DALYs) of depressive disorders by age, gender and sociodemographic index.
Results
In 2021, there were 357.44 million incident cases, 332.41 million prevalent cases and 56.33 million DALYs. Age-standardised rates for incidence, prevalence and DALYs were 4333.62, 4006.82 and 681.14 per 100 000 persons, with annual declines of 0.06%, 0.03% and 0.04%. Uganda, Greenland and Lesotho had the highest prevalence, while Spain, Mexico and Uruguay showed the largest increases. Greenland and Brunei Darussalam had the highest and lowest age-standardised DALYs rates, respectively. DALYs peaked in the 55–59 age group for men and 60–64 for women, with higher rates in women. Regionally, a U-shaped association was found between the sociodemographic index and DALYs rates. Population growth was the main driver for the increase in DALYs cases. Childhood maltreatment was the leading risk factor, with intimate partner violence affecting more females and childhood sexual abuse more males.
Conclusions
Despite decreasing trends in incidence, prevalence and DALYs rates, absolute case numbers and age-standardised rates continue to increase for depressive disorders. Tackling childhood abuse and improving depressive disorder management are crucial to reducing future burdens.
Panax L., renowned as ginseng genus, is a famous medicinal group of family Araliaceae. Within this genus, the taxa of Panax bipinnatifidus complex are mainly distributed in Himalayas and Hengduan Mountain areas. Due to the complex evolutionary history and short-term rapid radiation, the relationships among species within the complex have not been clearly resolved, and the taxa identification is difficult due to the intermediate morphological traits. This study aimed to use the available restriction-site associated DNA sequence data from 29 individuals of P. bipinnatifidus complex to mine high-polymorphic simple sequence repeat (SSR) markers, with the goal of evaluating their utility in taxa identification. Eleven polymorphic SSR loci were ultimately selected and validated through polymerase chain reactions amplifying across 63 individuals of P. bipinnatifidus complex and 13 individuals of three outgroup species. The subsequent genetic diversity analysis uncovered 76 alleles in total, ranging from 5 to 15 per locus. Observed heterozygosity spanned 0.241–0.512, while expected heterozygosity ranged between 0.345 and 0.644. The genetic kinship analysis revealed a sister relationship between Panax zingiberensis and Panax vietnamensis. The analysis result also supported the classification of samples from Hunan and Hubei provinces into a single genetic unit within the P. bipinnatifidus complex. These newly developed SSR markers will facilitate the identification of wild ginseng plants.
A novel method, combining an asymmetric four-grating compressor (AFGC) with pulse post-compression, is numerically demonstrated to improve the spatial uniformity of laser beams and hence to suppress small-scale self-focusing (SSSF) during the beam propagation in nonlinear materials of high peak power lasers. The spatial uniformity of laser beams is an important factor in performing post-compression, due to the spatial intensity modulation, or hot spots will be aggravated during the nonlinear propagation and then seriously damage the subsequent optical components. Three-dimensional numerical simulations of post-compression are implemented based on a femtosecond laser with a standard compressor and an AFGC, respectively. The simulated results indicate that post-compression with the AFGC can efficiently suppress the SSSF and also shorten the laser pulses from 30 fs to sub-10 fs. This work can provide a promising route to overcome the challenge of SSSF and will be meaningful to promote the practical application of the post-compression technique in high peak power lasers.
To meet the demands of laser-ion acceleration at a high repetition rate, we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets (LSTs). The spatially resolved rapid characterizations of an LST’s thickness, flatness, tilt angle and position are fulfilled by different subsystems with high accuracy. With the help of the diagnostic system, we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets. Control methods for the flatness and tilt angle of LSTs have also been provided, which are essential for applications of laser-driven ion acceleration and others.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.
The production and industrial use of asbestos cement and other asbestos-containing materials have been restricted in most countries because of the potential detrimental effects on human health and the environment. Chrysotile is the most common form of asbestos and investigations into how to recycle this serpentine phyllosilicate mineral have attracted extensive attention. Chrysotile asbestos tailings can be transformed thermally, at high temperature, by in situ carbothermal reduction (CR). The CR method aims to maximize use of the chrysotile available and uses high temperatures and carbon to change the mineral form and structure of the chrysotile asbestos tailings. When chrysotile asbestos is employed as the raw material and coke (carbon) powder is used as the reducing agent for CR transformation, stable, high-temperature composites consisting of forsterite, stishovite, and silicon carbide are formed. Forsterite (Mg2SiO4) was the most abundant crystalline phase formed in samples heat treated below 1500ºC. At 1600ºC, forsterite was exhausted through decomposition and β-SiC formed by reduction of stishovite. A larger proportion of β-SiC was generated as the carbon content was increased. This research revealed that both temperature and carbon addition play key roles in the transformation of chrysotile asbestos tailings.
The penultimate deglaciation was characterized by a sub-millennial-scale warm event in the Heinrich Stadial 11(HS11), termed the 134-ka event. However, its precise timing and structure remain poorly constrained due to the lack of high-resolution and precisely dated records. We present an oxygen isotope record of a speleothem with well-developed annual lamina from Zhangjia Cave, located on the north margin of the Sichuan Basin, characterizing Asian summer monsoon (ASM) changes in the 134-ka event, which included an increase excursion of ca. 149 years and decrease excursion of ca. 200 years, inferred from 3.3‰ δ18O variations. This event also divided the weak ASM interval-II (WMI-II), corresponding to HS11, into two stages, the WMI-IIa 132.8–134.1 ka and WMI-IIb 134.4–136.4 ka. With a comparable climatic pattern globally, the 134-ka event is essentially similar to the millennial-scale events in last glacial–deglacial period. Particularly, the observed weak-strong-weak ASM sequence (138.8–132.8 ka) is largely controlled by changes in the Atlantic Meridional Overturning Circulation (AMOC) forced by the meltwater of northern high-latitude ice sheets. Moreover, our results underpin that AMOC, rather than the global ice volume, is more critical to ASM variations during the last two deglaciations.
The western Mongolian Lake Zone was a Neoproterozoic to early Paleozoic volcanic arc where tuffs, lavas, fossiliferous siliciclastics, and carbonates accumulated during the early Cambrian. An uppermost Cambrian Series 2 (upper Stage 4) trilobite assemblage is described here from the Burgasutay Formation representing a continuous lower Cambrian succession at the Seer Ridge of the Great Lake Depression. The new assemblage is dominated by dorypygids and consists of 13 trilobite genera belonging to nine families including Catinouyia heyunensis new species. These fossils comprise the youngest and richest lower Cambrian trilobite assemblage in Mongolia. The composition of the Lake Zone fauna suggests its biogeographic affinity with the Siberian Platform and Altay-Sayan Foldbelt, but the presence of inouyiids also implies a connection of this region with East Gondwana.
We develop a simple two-sector neoclassical growth model in which the upstream sector produces intermediate goods, and the downstream sector produces final goods with outputs from the upstream. While the downstream sector features perfect competition, firms in the upstream sector engage in Cournot competition and charge a markup. We show that the deregulation and the introduction of competition in the upstream goods sector not only increases the productivity in the sector but also has a substantial spillover effect on the productivity of the downstream sector and factor prices. We calibrate the model to the Chinese economy and use the calibrated model to quantitatively evaluate the extent to which the deregulation in the upstream market in China from 1998 to 2006 can account for the rapid economic growth and the high and rising returns to capital in China over the same period. Our quantitative experiments show that the deregulation in the upstream sector can account for a significant share of economic growth in China during the study period. In addition, our model delivers implications that are consistent with several other relevant observations in China during the same period.
Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.
The rearrangement of drainage basins provides critical insight into crustal deformation and geodynamic mechanisms. Near the southeastern boundary of the Tibetan Plateau, the Dadu River abruptly shifts from south- to east-flowing, providing important implications for regional tectonogeomorphic development since the mid-Pleistocene. South of the bend, the headwaters of the Anning River occupy an unusually wide valley. Field investigations show that large quantities of fluvial/lacustrine sediments are widespread along the Dadu and Anning rivers and are exposed at their drainage divide. Detrital zircon U-Pb age patterns confirm that these fluvial/lacustrine sediments are the remnants of the paleo-Dadu River, which strongly suggests that the paleo-Dadu River originally flowed southward into the Anning River. The cosmogenic nuclide burial ages of the lacustrine sediments along the Dadu and Anning rivers suggest deposition of these sediments from separate dammed lakes ca. 1.2 Ma ago, ca. 0.6 Ma ago, and ca. 0.9 Ma ago from north to south, respectively. Provenance and burial-age studies indicate that reorganization of the Dadu drainage occurred within the last 0.6 Ma. We propose that this drainage reorganization in southeastern Tibet resulted from progressive convergence between the India and Eurasian plates during the Pleistocene.
Meat quality is not only influenced by breed but also rearing environment. The aim of this study was to evaluate the influence of different housing environments on growth performance, carcase traits, meat quality, physiological response pre-slaughter and fatty acid composition in two pig breeds. A total of 120 growing pigs at 60-70 days of age were arranged in a 2 × 2 factorial design with the breeds (Duroc × Landrace × Large White [D × L × LW] and Duroc × Landrace × Min pig [D × L × M]) and environmental enrichment (barren concrete floor or enriched with straw bedding) as factors. Each treatment was performed in triplicate with ten pigs per replicate. The pigs housed in the enriched environment exhibited a higher average daily gain, average daily feed intake, saturated fatty acid percentage and backfat depth than the pigs reared in the barren environment. Plasma cortisol levels were lower and growth hormone higher in enriched compared to barren pens. The D × L × M pigs showed lower cooking loss compared with the D × L × LW pigs. Moreover, the D × L × M pigs exhibited poor growth performance but had a better water-holding capacity. Only carcase traits and meat quality interaction effects were observed. We concluded that an enriched environment can reduce preslaughter stress and improve the growth performance of pigs and modulate the fatty acid composition of pork products.
We carried out experimental and numerical investigations on the axisymmetric spreading evolution of dynamic spin coating with a single drop of ethanol. The results show that the dynamic spreading process consists of two stages: inertial spreading stage and centrifugal thinning stage. These two stages are connected by a transient state in between characterized by the minimum contact line moving velocity. The Weber number determines the spreading in the first stage, similar to the case of the impact of a drop on a static substrate. The rotational Bond number has a marginal effect on the inertia spreading and the radius at the transient state. In the centrifugal thinning stage, the rotational Bond number dominates the flow while the effect of the Weber number is negligible.
Fossil feathers have greatly improved our understanding of the evolutionary transition from non-avian dinosaurs to birds and the evolution of feathers, and may be the only evidence for their source animals in the fossil record. Hot spring environments have been demonstrated to be conducive to the preservation of fossils, but internal silicification of feathers was not observed in the only avian carcass so far discovered in ancient hot spring deposits. To determine whether feathers can be internally silicified, here we analyse feathers sampled from a modern hot spring vent pool – Champagne Pool – in New Zealand. Our results of scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry elemental mapping show that the sampled feathers are silicified to different degrees, and one of them is pervasively silicified. SEM observations show that feathers can be silicified at the cellular level. Degradation is involved in the silicification of feathers, as indicated by the reduction of the abundance of carbon and the loss of keratin fibrils. Our findings suggest that ancient deposits of hot spring vent pools are promising targets in search for fossil feathers.
This study aimed to describe the clinical manifestations of adenovirus infections and identify potential risk factors for co-infection with chlamydia, viruses and bacteria in hospitalised children from Hangzhou, China. From January to December 2019, the characteristics of hospitalised children infected with adenovirus at Hangzhou Children's Hospital and Zhejiang Xiaoshan Hospital were collected. The clinical factors related to co-infection with chlamydia, viruses and bacteria were assessed using multivariate logistic regression analyses. A total of 5989 children were infected with adenovirus, of which 573 were hospitalised for adenovirus infection. The severity of adenovirus respiratory infection was categorised as follows: mild (bronchiolitis, 73.6%), moderate (bronchopneumonia, 17.6%) or severe (pneumonia, 8.8%). Of the 573 children who were hospitalised, 280 presented with co-infection of chlamydia, viruses or bacteria, while the remaining 293 had only adenovirus infection. Multivariate stepwise logistic regression analyses indicated that elevated ferritin was associated with an increased risk of chlamydia co-infection (odds ratio (OR) 6.50; 95% confidence interval (CI) 1.56–27.11; P = 0.010). However, increased white blood cell (WBC) count was associated with a reduced risk of viral co-infection (OR 0.84; 95% CI 0.75–0.95; P = 0.006). The study indicated that co-infection with chlamydia could be affected by elevated ferritin levels. WBC levels could affect viral co-infection in hospitalised children infected with adenovirus.
Mounting evidence showed that insula contributed to the neurobiological mechanism of suicidal behaviors in bipolar disorder (BD). However, no studies have analyzed the dynamic functional connectivity (dFC) of insular Mubregions and its association with personality traits in BD with suicidal behaviors. Therefore, we investigated the alterations of dFC variability in insular subregions and personality characteristics in BD patients with a recent suicide attempt (SA).
Methods
Thirty unmedicated BD patients with SA, 38 patients without SA (NSA) and 35 demographically matched healthy controls (HCs) were included. The sliding-window analysis was used to evaluate whole-brain dFC for each insular subregion seed. We assessed between-group differences of psychological characteristics on the Minnesota Multiphasic Personality Inventory-2. Finally, a multivariate regression model was adopted to predict the severity of suicidality.
Results
Compared to NSA and HCs, the SA group exhibited decreased dFC variability values between the left dorsal anterior insula and the left anterior cerebellum. These dFC variability values could also be utilized to predict the severity of suicidality (r = 0.456, p = 0.031), while static functional connectivity values were not appropriate for this prediction. Besides, the SA group scored significantly higher on the schizophrenia clinical scales (p < 0.001) compared with the NSA group.
Conclusions
Our findings indicated that the dysfunction of insula–cerebellum connectivity may underlie the neural basis of SA in BD patients, and highlighted the dFC variability values could be considered a neuromarker for predictive models of the severity of suicidality. Moreover, the psychiatric features may increase the vulnerability of suicidal behavior.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
This paper aims to solve the optimization problems in far-field wireless power transfer systems using deep reinforcement learning techniques. The Radio-Frequency (RF) wireless transmitter is mounted on a mobile robot, which patrols near the harvested energy-enabled Internet of Things (IoT) devices. The wireless transmitter intends to continuously cruise on the designated path in order to fairly charge all the stationary IoT devices in the shortest time. The Deep Q-Network (DQN) algorithm is applied to determine the optimal path for the robot to cruise on. When the number of IoT devices increases, the traditional DQN cannot converge to a closed-loop path or achieve the maximum reward. In order to solve these problems, an area division Deep Q-Network (AD-DQN) is invented. The algorithm can intelligently divide the complete charging field into several areas. In each area, the DQN algorithm is utilized to calculate the optimal path. After that, the segmented paths are combined to create a closed-loop path for the robot to cruise on, which can enable the robot to continuously charge all the IoT devices in the shortest time. The numerical results prove the superiority of the AD-DQN in optimizing the proposed wireless power transfer system.