We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Density-functional formalism is applied to study the ground state properties of γ-U-Zr and γ-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for γ-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the δ-UZr2 compound against the α-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U2Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.
Electronic structure and stability properties of ternary-metal alloys are examined using an extension of the Coherent Potential Approximation -Generalized Perturbation Method approach within the Tight-Binding description of the chemically random alloy. In particular, we report on calculations of density of states, mixing energies and effective cluster interactions which build up the ordering energy. The study focuses on the Ti-V-Fe system and its binary components.
Recently, the phase diagram of AI-Li alloys was calculated with the use of the Connolly-Williams method. In an effort to test the validity and to supplement the results of that study, equilibrium lattice constants and effective cluster interactions have been obtained using the generalized perturbation method within the first-principles multiple-scattering formalism of the Korringa-Kohn-Rostoker coherent-potential approximation. The implication of these effective interactions to the phase stability of these alloys is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.