We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
TbMnO3 exists in an orthorhombic phase in nature. Recently, we successfully grew TbMnO3 thin films in the hexagonal phase using epitaxial stabilization techniques. In this article, we will show the details of the deposition conditions that allow us to fabricate the hexagonal TbMnO3 films on Pt–Al2O3(0001) substrates. The artificial hexagonal phase can be easily formed above 850 °C, irrespective of the oxygen partial pressure. The hexagonal TbMnO3 films showed ferroelectric properties, which are significantly enhanced compared to those of the orthorhombic TbMnO3 bulk phase. We find interesting anomalies in the magnetic and magnetodielectric properties of the TbMnO3 films at around 45 K, which should be related with the Mn3+ spin reorientation. We also find spin-glass-like behaviors in the magnetic susceptibility, which could be attributed to the geometric frustration of antiferromagnetically coupled Mn spins with an edge-sharing triangular lattice. This work shows details of the growth and properties of hexagonal TbMnO3 films.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.