We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph–based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly “Question-of-the-Month (QotM) Challenge” series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.
To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately represents and adapts to these individualities, bringing the data together into a single curve. For IntCal20, the statistical methodology has undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach based upon Bayesian splines with errors-in-variables. The new spline approach is still fitted using Markov Chain Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and more reliable curve construction together with greatly increased flexibility and detail in modeling choices. This paper describes the new methodology together with the tailored modifications required to integrate the various datasets. For an end-user, the key changes include the recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration which we address through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase confidence in the estimated curve.
Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
Early researchers of radiocarbon levels in Southern Hemisphere tree rings identified a variable North-South hemispheric offset, necessitating construction of a separate radiocarbon calibration curve for the South. We present here SHCal20, a revised calibration curve from 0–55,000 cal BP, based upon SHCal13 and fortified by the addition of 14 new tree-ring data sets in the 2140–0, 3520–3453, 3608–3590 and 13,140–11,375 cal BP time intervals. We detail the statistical approaches used for curve construction and present recommendations for the use of the Northern Hemisphere curve (IntCal20), the Southern Hemisphere curve (SHCal20) and suggest where application of an equal mixture of the curves might be more appropriate. Using our Bayesian spline with errors-in-variables methodology, and based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data, we estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older.
Recent investigations of a limestone solution cave on the Queen Charlotte Islands (Haida Gwaii) have yielded skeletal remains of fauna including late Pleistocene and early Holocene bears, one specimen of which dates to ca. 14,400 14C yr B.P. This new fossil evidence sheds light on early postglacial environmental conditions in this archipelago, with implications for the timing of early human migration into the Americas.
This book presents a wide range of new research on many aspects of naval strategy in the early modern and modern periods. Among the themes covered are the problems of naval manpower, the nature of naval leadership and naval officers, intelligence, naval training and education, and strategic thinking and planning. The book is notable for giving extensive consideration to navies other than those ofBritain, its empire and the United States. It explores a number of fascinating subjects including how financial difficulties frustrated the attempts by Louis XIV's ministers to build a strong navy; how the absence of centralised power in the Dutch Republic had important consequences for Dutch naval power; how Hitler's relationship with his admirals severely affected German naval strategy during the Second World War; and many more besides. The book is a Festschrift in honour of John B. Hattendorf, for more than thirty years Ernest J. King Professor of Maritime History at the US Naval War College and an influential figure in naval affairs worldwide.
N.A.M. Rodger is Senior Research Fellow at All Souls College, Oxford.
J. Ross Dancy is Assistant Professor of Military History at Sam Houston State University.
Benjamin Darnell is a D.Phil. candidate at New College, Oxford.
Evan Wilson is Caird Senior Research Fellow at the National Maritime Museum, Greenwich.
Contributors: Tim Benbow, Peter John Brobst, Jaap R. Bruijn, Olivier Chaline, J. Ross Dancy, Benjamin Darnell, James Goldrick, Agustín Guimerá, Paul Kennedy, Keizo Kitagawa, Roger Knight, Andrew D. Lambert, George C. Peden, Carla Rahn Phillips, Werner Rahn, Paul M. Ramsey, Duncan Redford, N.A.M. Rodger, Jakob Seerup, Matthew S. Seligmann, Geoffrey Till, Evan Wilson
In 1918, Admiral William S. Sims, the newly appointed President of the United States Naval War College, wrote to Professor H. Spenser Wilkinson, the first Chichele Professor of Military History at the University of Oxford:
I have been an interested reader of your reviews in the Press for the past year (and of course I am well acquainted with your books), but I am particularly interested in your article in THE TIMES of Sunday, December 22nd [1918], in regard to educational questions, particularly as it relates to general staff training … [I would like] to discuss with you the above questions, particularly as relates to Naval War College work in time of peace.
These men shared a correspondence over the next four years concerning ‘ideas on education for Officers for the Navy’ and ‘the principles of the art of warfare’. Their conclusions shaped the teaching of strategy and sea power at the Naval War College throughout the interwar period, creating an intellectual legacy still evident today in the courses and material taught.
Their short exchange of letters and meetings in London and Oxford created a mutual interest and an important exchange of ideas, particularly for the reforms Sims was about to make at the United States Naval War College. Towards the end of Sims's time as president, he told Wilkinson, ‘As you doubtless know, many of your books are in constant use at the Naval War College and are widely quoted in naval writings.’ Indeed, Sims requested an extra thirty copies of The Brain of the Navy(1895) from Wilkinson, because ‘[the College] consider[ed] this to be so suggestive and valuable to the beginners at the college that [it] wish[ed] to have these copies for their use’. As Sims wrote, ‘This little book will never be out of date as far as this college is concerned.’ Wilkinson secured one hundred copies for Sims. This transfer of ideas and influence poses a number of key questions about our understanding of the development of the Naval War College not only under Sims's presidency, but also throughout the years before the Second World War.
The IntCal09 and Marine09 radiocarbon calibration curves have been revised utilizing newly available and updated data sets from 14C measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibration curves were derived from the data using the random walk model (RWM) used to generate IntCal09 and Marine09, which has been revised to account for additional uncertainties and error structures. The new curves were ratified at the 21st International Radiocarbon conference in July 2012 and are available as Supplemental Material at www.radiocarbon.org. The database can be accessed at http://intcal.qub.ac.uk/intcal13/.
High-quality data from appropriate archives are needed for the continuing improvement of radiocarbon calibration curves. We discuss here the basic assumptions behind 14C dating that necessitate calibration and the relative strengths and weaknesses of archives from which calibration data are obtained. We also highlight the procedures, problems, and uncertainties involved in determining atmospheric and surface ocean 14C/12C in these archives, including a discussion of the various methods used to derive an independent absolute timescale and uncertainty. The types of data required for the current IntCal database and calibration curve model are tabulated with examples.