We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Artificial intelligence (AI) has the potential to enhance clinical decision-making, including in infectious diseases. By improving antimicrobial resistance prediction and optimizing antibiotic prescriptions, these technologies may support treatment strategies and address critical gaps in healthcare. This study evaluates the effectiveness of AI in guiding appropriate antibiotic prescriptions for infectious diseases through a systematic literature review.
Methods:
We conducted a systematic review of studies evaluating AI (machine learning or large language models) used for guidance on prescribing appropriate antibiotics in infectious disease cases. Searches were performed in PubMed, CINAHL, Embase, Scopus, Web of Science, and Google Scholar for articles published up to October 25, 2024. Inclusion criteria focused on studies assessing the performance of AI in clinical practice, with outcomes related to antimicrobial management and decision-making.
Results:
Seventeen studies used machine learning as part of clinical decision support systems (CDSS). They improved prediction of antimicrobial resistance and optimized antimicrobial use. Six studies focused on large language models to guide antimicrobial therapy; they had higher prescribing error rates, patient safety risks, and needed precise prompts to ensure accurate responses.
Conclusions:
AI, particularly machine learning integrated into CDSS, holds promise in enhancing clinical decision-making and improving antimicrobial management. However, large language models currently lack the reliability required for complex clinical applications. The indispensable role of infectious disease specialists remains critical for ensuring accurate, personalized, and safe treatment strategies. Rigorous validation and regular updates are essential before the successful integration of AI into clinical practice.
We have developed the bispectral electroencephalography (BSEEG) method for detection of delirium and prediction of poor outcomes.
Aims
To improve the BSEEG method by introducing a new EEG device.
Method
In a prospective cohort study, EEG data were obtained and BSEEG scores were calculated. BSEEG scores were filtered on the basis of standard deviation (s.d.) values to exclude signals with high noise. Both non-filtered and s.d.-filtered BSEEG scores were analysed. BSEEG scores were compared with the results of three delirium screening scales: the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU), the Delirium Rating Scale-Revised-98 (DRS) and the Delirium Observation Screening Scale (DOSS). Additionally, the 365-day mortalities and the length of stay (LOS) in the hospital were analysed.
Results
We enrolled 279 elderly participants and obtained 620 BSEEG recordings; 142 participants were categorised as BSEEG-positive, reflecting slower EEG activity. BSEEG scores were higher in the CAM-ICU-positive group than in the CAM-ICU-negative group. There were significant correlations between BSEEG scores and scores on the DRS and the DOSS. The mortality rate of the BSEEG-positive group was significantly higher than that of the BSEEG-negative group. The LOS of the BSEEG-positive group was longer compared with that of the BSEEG-negative group. BSEEG scores after s.d. filtering showed stronger correlations with delirium screening scores and more significant prediction of mortality.
Conclusions
We confirmed the usefulness of the BSEEG method for detection of delirium and of delirium severity, and prediction of patient outcomes with a new EEG device.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.