We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Drawing on insights from sociology and new institutional economics, Extralegal Governance provides the first comprehensive account of China's illegal markets by applying a socio-economic approach. It considers social legitimacy and state repression in examining the nature of illegal markets. It examines how power dynamics and varying levels of punishment shape exchange relationships between buyers and sellers. It identifies context-specific risks and explains how private individuals and organizations address these risks by developing extralegal governance institutions to facilitate social cooperation across various illegal markets. Adopting a multiple-case study design to sample China's illegal markets, this book utilizes four cases - street vending, small-property-rights housing, corrupt exchanges, and online loan sharks - to examine how market participants foster cooperation and social order in illegal markets.
The composite dietary antioxidant index (CDAI) has been identified as a critical factor in the pathogenesis of certain inflammatory diseases. The study aimed to investigate the relationship between CDAI and Helicobacter pylori (H. pylori) infection using cross-sectional design. In this study, participants from the 1999-2000 National Health and Nutrition Examination Survey (NHANES) were analyzed using logistic and Cox regression analyses to assess the associations between H. pylori infection and CDAI, encompassing vitamin A, vitamin C, vitamin E, carotene, zinc, selenium, and copper. The results demonstrated a negative correlation between CDAI scores and H. pylori infection, revealing a non-linear relationship between the odds of H. pylori infection and CDAI as a continuous variable. Subsequently, a two-sample Mendelian randomization (MR) study was conducted utilizing genome-wide association study (GWAS) summary statistics to explore the causal relationship between antioxidant levels and H. pylori infection. We found that the intake of copper was a protective factor in the occurrence of H. pylori infection but did not support a causal association between circulating copper levels and H. pylori infection. The prevalence of H. pylori infection was found to be elevated among individuals of older age, lower education levels, limited socioeconomic status, smokers, diabetes, and those with hypertension. The study suggests that higher CDAI is linked to a decreased odds of H. pylori infection, and further prospective studies are needed to confirm the association. Our findings may have significant implications for the prevention and management of H. pylori-related diseases.
The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a highly destructive polyvorous pest with a wide host range and the ability to feed continuously with seasonal changes. This destructive pest significantly damages crops and can also utilize non-agricultural plants, such as weeds, as alternative hosts. However, the adaptation mechanisms of S. frugiperda when switching between crop and non-crop hosts remain poorly understood, posing challenges for effective monitoring and integrated pest management strategies. Therefore, this study aims to elucidate the adaptability of S. frugiperda to different host plants. Results showed that corn (Zea mays L.) was more suitable for the growth and development of S. frugiperda than wheat (Triticum aestivum L.) and goosegrass (Eleusine indica). Transcriptome analysis identified 699 genes differentially expressed when fed on corn, wheat, and goosegrass. The analysis indicated that the detoxification metabolic pathway may be related to host adaptability. We identified only one SfGSTs2 gene within the GST family and investigated its functional role across different developmental stages and tissues by analysing its spatial and temporal expression patterns. The SfGSTs2 gene expression in the midgut of larvae significantly decreased following RNA interference. Further, the dsRNA-fed larvae exhibited a decreased detoxification ability, higher mortality, and reduced larval weight. The findings highlight the crucial role of SfGSTs2 in host plant adaptation. Evaluating the feeding preferences of S. frugiperda is significant for controlling important agricultural pests.
Different two-dimensional structural units of layered silicate minerals have different chemical and reaction properties. Sulfuric acid solution mineral-leaching systems with pH of 2.0, 4.0 and 6.0 were constructed to investigate the differential dissolution properties of lizardite (1:1 type), chlorite and talc (2:1 type minerals) and the chemical kinetic mechanism of the mineral–water interface reaction. The results showed that the dissolution efficiency of Mg in lizardite is higher than that of chlorite and talc in acidic environments (pH of 2.0, 4.0 and 6.0). The dissolution efficiency of Mg in chlorite is greater than that of talc for acidic environments when pH is 2.0 and 4.0, but chlorite and talc have nearly identical Mg dissolution efficiencies at a pH of 6.0. This phenomenon is related to the defect site on the tetrahedral sheet of chlorite and is controlled by the change of the dissolution efficiency of Al. The dissolution rates of Mg and Si in lizardite, chlorite and talc decreased with the increase of reaction time in the acidic medium for pH = 2.0, 4.0 and 6.0, and there are two linear dissolution trends at different pH values. The dissolution efficiencies of Mg and Si in lizardite, chlorite and talc were simulated and predicted by establishing a logistic model. It was found that the maximum dissolution efficiency of 2:1 type minerals chlorite and talc are only 4.72% and 1.58%, which is much lower than that of 1:1 type lizardite. This research on the reaction mechanism and dissolution kinetics of lizardite, chlorite and talc not only helps to deepen the understanding of the mineral–water interface interaction, but also reveals the different rules for Mg, Si and Al dissolution in different types of trioctahedral mineral–water interface reactions, and provides a crystal chemical basis for the ion migration and action mechanism of minerals.
This paper presents a low-profile miniaturized dual-band antenna utilizing the quarter-mode substrate integrated waveguide (QMSIW) structure. The two modes of TE110 and TE220 of a single QMSIW structure are employed, enabling a dual-band operation. The frequency ratio between the two bands can be tuned by loading a capacitive structure, which is comprised of a capacitive-loaded patch and a short circuit post, inside the QMSIW structure. By introducing parasitic QMSIW structures through magnetic coupling, a dual-band antenna with enhanced bandwidths is achieved. The antenna has dimensions of smaller than 400 mm2 (0.048λL2) with a uniform height of 1.4 mm (0.016λL). Measurement results indicate that the −6 dB impedance bandwidths of the antennas can cover the 5G N78 (3.3–3.6 GHz) and N79 (4.8–5 GHz) bands, and the average efficiencies is better than −2.5 dB. To the authors’ knowledge, the proposed designs offer dual-wideband operation while having the smallest planar dimension compared to the previously reported antennas. Furthermore, an extended electric coupling dual-band antenna configuration is also described and measured, which achieves similar bandwidth extension as the proposed antenna.
We present a unified framework derived from the total heat flux equation, enabling the direct formulation of the relationship between mean temperature and velocity fields, as well as the development of mean temperature scalings in compressible turbulent channel flows. The proposed mean temperature–velocity relationship, combined with a simple damping function model for the mixed Prandtl number, demonstrates high efficacy in channels with both symmetric and asymmetric thermal boundary conditions across a range of Mach and Reynolds numbers. In contrast, the state-of-the-art generalised Reynolds analogy (GRA) relation (Zhang et al., 2014, J. Fluid Mech., vol. 739, pp. 392–420) is shown to be insufficient for asymmetric cases due to mismatched boundary conditions at the effective boundary layer edge. By introducing a mean temperature decomposition, we clarify that while the GRA relation effectively characterises the component associated with turbulence production and viscous dissipation, it fails to account for the contribution arising from non-zero edge total heat flux. Furthermore, we rigorously derive mean temperature transformations compatible with arbitrary velocity scalings for the first time. These findings provide some physical insights into the mean momentum and heat transport in compressible wall-bounded turbulence, and may be helpful for developing near-wall models.
This paper investigates both conditional and unconditional convergence in labor productivity within the manufacturing industries of the Eurozone over the period 1963 – 2018. We employ two innovative models: constant and varying-coefficient hierarchical panel data convergence regression models, each equipped with two sets of latent factor structures—one comprising global factors and the other industry-specific factors. These models offer distinct advantages, allowing for both global and industry-specific cross-sectional dependencies and permitting parameter heterogeneity across individual industries. Our findings reveal both conditional and unconditional convergence across the manufacturing industry as a whole, as well as among the majority of the 23 sub-manufacturing industries at the ISIC two-digit level. Moreover, we observe significant variation in convergence dynamics among these sub-manufacturing industries. Robustness checks, performed across different subperiods, confirm the reliability of our results. Furthermore, a comparison of our model’s outcomes with those of two alternative models provides additional support for our conclusions.
We present an experimental study on the effects of polymer additives on the turbulent/non-turbulent interface (TNTI) in a fully developed round water jet. The Reynolds number based on the jet diameter is fixed at $Re=7075$. The Weissenberg number $Wi$ ranges from 24 to 86. We employ time-resolved simultaneous particle image velocimetry and laser-induced fluorescence measurements to investigate the local entrainment and engulfment process along the TNTI in two regimes: entrainment transition and enhancement regimes. In polymer-laden jets, the TNTI fluctuates more intermittently in the radial direction and more ambient fluid can be engulfed into the turbulent region due to the augmented large scale motion. Though the contribution of engulfment to the total flux increases with $Wi$, engulfment is still not the major contribution to the entrainment in polymer-laden jets. We further show that the local entrainment velocity is increased in both regimes compared with the pure water jet, due to two contributions: polymer elastic stress and the more intermittent character of the TNTI. In the entrainment transition regime, we observe smaller fractal dimension and shorter length of TNTI compared with the Newtonian case, consistent with previous numerical simulations (Abreu et al. J. Fluid Mech. vol. 934, 2022, A36); whereas those in the enhancement regime remain largely unchanged. The difference between the two regimes results from the fact that the jet flow decays in the streamwise direction. In the entrainment transition regime, turbulence intensity is strong enough to significantly stretch the polymers, resulting in a smoother TNTI in the inertial range. However, in the entrainment enhancement regime, the polymer’s feedback is not strong enough to alter the fractal dimension due to the low elasticity. The above mentioned differences of entrainment velocity and TNTI in the entrainment reduction/transition and enhancement regimes also explain the reduced and enhanced spreading rate of the viscoelastic jet observed in previous numerical simulations and experiments (Guimarães et al. J. Fluid Mech. 2020,vol. 899, A11; Peng et al. Phys. Fluids, 2023, vol. 35, 045110).
This study presents a novel approach for constructing turbulence models using the kinetic Fokker–Planck equation. By leveraging the inherent similarities between Brownian motion and turbulent dynamics, we formulate a Fokker–Planck equation tailored for turbulence at the hydrodynamic level. In this model, turbulent energy plays a role analogous to temperature in molecular thermodynamics, and the large-scale structures are characterised by a turbulent relaxation time. This model aligns with the framework of Pope’s generalised Langevin model, with the first moment recovering the Reynolds-averaged Navier–Stokes (RANS) equations, and the second moment yielding a partially modelled Reynolds stress transport equation. Utilising the Chapman–Enskog expansion, we derive asymptotic solutions for this turbulent Fokker–Planck equation. With an appropriate choice of relaxation time, we obtain a linear eddy viscosity model at first order, and a quadratic Reynolds stress constitutive relationship at second order. Comparative analysis of the coefficients of the quadratic expression with typical nonlinear viscosity models reveals qualitative consistency. To further validate this kinetic-based nonlinear viscosity model, we integrate it as a RANS model within computational fluid dynamics codes, and calculate three typical cases. The results demonstrate that this quadratic eddy viscosity model outperforms the linear model and shows comparability to a cubic model for two-dimensional flows, without the introduction of ad hoc parameters in the Reynolds stress constitutive relationship.
The interaction of a swimmer with unsteady vortices in complex flows remains a topic of interest and open discussion. The present study, employing the immersed boundary method with a flexible fin model, explores swimming behaviours behind a circular cylinder with vortex-induced vibration (VIV). Five distinct swimming modes are identified on the $U_r$–$G_0$ plane, where $U_r$ denotes the reduced velocity, and $G_0$ represents the fin’s initial position. These modes include drifting upstream I/II (DU-I/II), Karman gait I/II (KG-I/II), and large oscillation (LO), with the DU-II, KG-II and LO modes being newly reported. The fin can either move around or cross through the vortex cores in the KG-I and KG-II modes, respectively, for energy saving and maintaining a stable position. When the upstream cylinder vibrates with its maximum amplitude, a double-row vortex shedding forms in the wake, allowing the DU-II mode to occur with the fin to achieve high-speed locomotion. This is attributed to a significant reduction in the streamwise velocity caused by vortex-induced velocity. Furthermore, a symmetry breaking is observed in the fin’s wake in the DU-II mode, potentially also contributing to high-speed locomotion. Overall, compared to the case without an upstream cylinder, we demonstrate that a self-propelled fin gains hydrodynamic advantages with various swimming modes in different VIV wakes. Interestingly, increased power transferred from flows by the oscillating cylinder leads to a more favourable environment for the downstream fin’s propulsion, indicating that a fin in VIV wakes obtains more advantages compared to the vortex street generated by a stationary cylinder.
Wall turbulence consists of various sizes of vortical structures that induce flow circulation around a wide range of closed Eulerian loops. Here we investigate the multiscale properties of circulation around such loops in statistically homogeneous planes parallel to the wall. Using a high-resolution direct numerical simulation database of turbulent channels at Reynolds numbers of $Re_\tau =180$, 550, 1000 and 5200, circulation statistics are obtained in planes at different wall-normal heights. Intermittency of circulation in the planes of the outer flow ($y^+ \gtrsim 0.1Re_\tau$) takes the form of universal bifractality as in homogeneous and isotropic turbulence. The bifractal character simplifies to space-filling character close to the wall, with scaling exponents that are linear in the moment order, and lower than those given by the Kolmogorov paradigm. The probability density functions of circulation are long-tailed in the outer bifractal region, with evidence showing their invariance with respect to the loop aspect ratio, while those in the inner region are closely Gaussian. The unifractality near the wall implies that the circulation there is not intermittent in character.
This chapter by Ito Peng and Joseph Wong on East Asian Asian welfare regimes is very welcome, particularly as a guide for what to watch in our increasingly fluid era of financial, energy and other shocks to the developed and developing economies. The authors review the literature on East Asian welfare states and show how much of it has been concerned with highlighting essential differences between the region and a generalized model of what we see in North America, Europe, and Scandinavia. (We might add that generalizing among those latter cases also seems unwise). One of the critically distinctive features of the East Asian welfare state typology was and remains the rather restricted fiscal role of the state. As the authors point out, in 2005 Japan led East Asia with 18.6% of GDP devoted to social spending. But the average in the OECD and EU countries was, respectively, 20.5 and 27%. Taiwan and Hong Kong are even further removed from the OECD pattern. During the mid-2000s they were only spending about 10% of GDP on social outlays. And then there is Korea, China, and Singapore weighing in with less than 7% of GDP spent on social outlays. The issues are particularly fascinating in light of the literature on the developmental state, pioneered by the late Chalmers Johnson, which highlights each of these countries as examples of state intervention in charting economic development.
Droplet coalescence is an essential multiphase flow process in nature and industry. For the inviscid coalescence of two spherical droplets, our experiment shows that the classical 1/2 power-law scaling for equal-size droplets still holds for the unequal-size situation of small size ratios, but it diverges as the size ratio increases. Employing an energy balance analysis, we develop the first theory for asymmetric droplet coalescence, yielding a solution that collapses all experimental data of different size ratios. This confirms the physical relevance of the new set of length and time scales given by the theory. The functionality of the solution reveals an exponential dependence of the bridge’s radial growth on time, implying a scaling-free nature. Nevertheless, the small-time asymptote of the model is able to recover the classical power-law scaling, so that the actual bridge evolution still follows the scaling law asymptotically in a wide parameter space. Further analysis suggests that the scaling-free evolution behaviour emerges only at late coalescence time and large size ratios.
The third annual head-of-state summit of the Shanghai Cooperation Organization (SCO) in Moscow on May 20, 2003, may be considered a minor water-shed in the life of the organization, made up of Russia, China, and the Central Asian republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan.
First, the meeting implemented concrete measures to institutionalize the organization, by mandating the creation of two permanent offices and attendant staff—an SCO Secretariat, and a Regional Anti-Terrorist Structure (RATS). Second, China has since emerged as the first among equals of the players in the SCO in terms of influence and benefits, when it was decided that Beijing would be the site of the proposed SCO Secretariat, subsequently inaugurated on January 15, 2004, and that its first Secretary- General would be the former Chinese Vice-Foreign Minster and Ambassador to Russia, Zhang Deguang. Third, although cooperation among governments of member states against terrorism, religious fundamentalism, and separatism has remained the focus of the SCO, the summit expanded its purview to the economic sphere by encouraging trade, investment and infrastructural development among member states. Lastly, by creating the RATS in Uzbekistan's capital of Tashkent after protracted discussion, Russia and China demonstrated that they have recovered sufficiently from the shock and numbness of the introduction of United States soldiers and weaponry into Afghanistan and Central Asia to frame their own approach to regional security within the rubric of the SCO.
We aimed to validate in-body bioelectrical impedance analysis (BIA) measures with dual-energy X-ray absorptiometry (DXA) as reference and describe the body composition (BC) profiling of Tibetan adults.
Design:
This cross-sectional study included 855 participants (391 men and 464 women). Correlation and Bland–Altman analyses were performed for method agreement of in-body BIA and DXA. BC were described by obesity and metabolic status.
Setting:
In-body BIA and DXA have not been employed to characterise the BC of the Tibetan population living in the Qinghai–Tibet Plateau.
Participants:
A total of 855 Tibetan adults, including 391 men and 464 women, were enrolled in the study.
Results:
Concordance correlation coefficient for total fat mass (FM) and total lean mass (LM) between in-body BIA and DXA were 0·91 and 0·89. The bias of in-body BIA for percentages of total FM and total LM was 0·91 % (2·46 %) and –1·74 % (–2·80 %) compared with DXA, respectively. Absolute limits of agreement were wider for total FM in obese men and women and for total LM in overweight men than their counterparts. Gradience in the distribution of total and regional FM content was observed across different BMI categories and its combinations with waist circumference and metabolic status.
Conclusions:
In-body BIA and DXA provided overall good agreement at the group level in Tibetan adults, but the agreement was inferior in participants being overweight or obese.
History effects play a significant role in determining the velocity in boundary layers with pressure gradients, complicating the identification of a velocity scaling. This work pivots away from traditional velocity analysis to focus on fluid acceleration in boundary layers with strong adverse pressure gradients. We draw parallels between the transport equation of the velocity in an equilibrium spatially evolving boundary layer and the transport equation of the fluid acceleration in temporally evolving boundary layers with pressure gradients, establishing an analogy between the two. To validate our analogy, we show that the laminar Stokes solution, which describes the flow immediately after the application of a pressure gradient force, is consistent with the present analogy. Furthermore, fluid acceleration exhibits a linear scaling in the wall layer and transitions to logarithmic scaling away from the wall after the initial period, mirroring the velocity in an equilibrium boundary layer, lending further support to the analogy. Finally, by integrating fluid acceleration, a velocity scaling is derived, which compares favourably with data as well.
Studies on the evolution of characteristics and dynamic mechanisms of dry/wet status in global arid regions are contradictory. We systematically assessed the evolution and drivers of dry/wet status in global arid regions from a paleoclimate perspective using observational datasets, paleoclimate records, and climate model simulations from Paleoclimate Model Intercomparison Project Phase 4 (PMIP4)-Coupled Model Intercomparison Project Phase 6 (CMIP6) and PMIP3-CMIP5. Our results show that climate change during the last glacial maximum (LGM) provides a reverse analog for the near-future climate in global arid regions. The notable migration of the subtropical high during the LGM profoundly altered the atmospheric circulation and influenced dry/wet status in global arid regions. The multimodel ensembles project that under the shared socioeconomic pathway (SSP) 8.5 scenario, nonuniform heating induced by polar-amplified warming will introduce northward migration of the subtropical high. The resulting reduction in subtropical precipitation will lead to expansion of global arid regions under global warming, which is consistent with previous studies based on atmospheric aridity.
In the behavioral theory of the firm, decision-makers' interpretation of performance feedback information is the fundamental intermediate step between the evaluation of performance and the consequent strategic decision-making. However, such interpretations can be shaped or even distorted by the cognitive lens taken by decision-makers, such as their time concept in terms of biased cognitions of the importance and imminence of the future over the present. This study focuses on the role of a specific temporal bias (the time concept expressed in languages) in shaping the response to performance feedback. On the basis of the baseline proposition of a positive relationship between the underperformance duration (a temporal dimension of performance feedback) and acquisition behavior, we theorize and empirically examine how the future-time reference (FTR) of languages under different conditions shapes the way firms respond to repeated performance shortfalls. Using a sample of 12,309 firms from 12 countries between 2007 and 2019, we find that the FTR weakens the connection between the underperformance duration and subsequent acquisitions. Moreover, slack resources strengthen, whereas political stability weakens, this moderating effect of FTR on the underperformance duration–firm acquisition relationship.
Exposure to adversity during the perinatal period has been associated with cognitive difficulties in children. Given the role of the nucleus accumbens (NAcc) in attention and impulsivity, we examined whether NAcc volume at age six mediates the relations between pre- and postnatal adversity and subsequent attention problems in offspring. 306 pregnant women were recruited as part of the Growing Up in Singapore Towards Healthy Outcomes Study. Psychosocial stress was assessed during pregnancy and across the first 5 years postpartum. At six years of age, children underwent structural MRI and, at age seven years, mothers reported on their children’s attention problems. Separate factor analyses conducted on measures of pre- and postnatal adversity each yielded two latent factors: maternal mental health and socioeconomic status. Both pre- and postnatal maternal mental health predicted children’s attention difficulties. Further, NAcc volume mediated the relation between prenatal, but not postnatal, maternal mental health and children’s attention problems. These findings suggest that the NAcc is particularly vulnerable to prenatal maternal mental health challenges and contributes to offspring attention problems. Characterizing the temporal sensitivity of neurobiological structures to adversity will help to elucidate mechanisms linking environmental exposures and behavior, facilitating the development of neuroscience-informed interventions for childhood difficulties.