We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.
Technical summary
The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.
Social media summary
We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts.
In dairy production, high feed efficiency (FE) is important to reduce feed costs and negative impacts of milk production on the climate and environment, yet little is known about the relationship between FE, eating behaviour and activity. This research communication describes how cows differing in FE, expressed as daily energy corrected milk production per unit of feed intake, differed in eating behaviour and activity. We used data from a study of 253 lactations obtained from 97 Holstein and 91 Jersey cows milked in an automatic milking system. Automated feed troughs recorded feed intake behaviour and cows wore a sensor that recorded activity from 5 to 200 d in milk (DIM). We used a mixed linear model to estimate random solutions for individual cows for traits of steps, lying and eating behaviour and calculated their correlation with FE during four periods (5–35, 36–75, 76–120 and 121–200 DIM). Separate analyses were performed for each breed and period. We found that individual level correlations between FE and behaviour traits were stronger in Jersey than in Holstein cows. Eating rate correlated weakly negatively to FE in Holstein cows and more strongly so in Jersey cows, such that efficient Jerseys were slower eaters. The physical activity of Jersey cows was weakly and negatively correlated to FE, but this was not the case in Holstein cows. We conclude that eating rate was consistently negatively associated with FE throughout lactation for Jersey cows, but not for Holstein cows.
Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.
Methods:
We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.
Results:
BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.
Conclusions:
We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
We summarize what we assess as the past year's most important findings within climate change research: limits to adaptation, vulnerability hotspots, new threats coming from the climate–health nexus, climate (im)mobility and security, sustainable practices for land use and finance, losses and damages, inclusive societal climate decisions and ways to overcome structural barriers to accelerate mitigation and limit global warming to below 2°C.
Technical summary
We synthesize 10 topics within climate research where there have been significant advances or emerging scientific consensus since January 2021. The selection of these insights was based on input from an international open call with broad disciplinary scope. Findings concern: (1) new aspects of soft and hard limits to adaptation; (2) the emergence of regional vulnerability hotspots from climate impacts and human vulnerability; (3) new threats on the climate–health horizon – some involving plants and animals; (4) climate (im)mobility and the need for anticipatory action; (5) security and climate; (6) sustainable land management as a prerequisite to land-based solutions; (7) sustainable finance practices in the private sector and the need for political guidance; (8) the urgent planetary imperative for addressing losses and damages; (9) inclusive societal choices for climate-resilient development and (10) how to overcome barriers to accelerate mitigation and limit global warming to below 2°C.
Social media summary
Science has evidence on barriers to mitigation and how to overcome them to avoid limits to adaptation across multiple fields.
The purpose of this study was to examine possible pathways by which genetic risk associated with externalizing is transmitted in families. We used molecular data to disentangle the genetic and environmental pathways contributing to adolescent externalizing behavior in a sample of 1,111 adolescents (50% female; 719 European and 392 African ancestry) and their parents from the Collaborative Study on the Genetics of Alcoholism. We found evidence for genetic nurture such that parental externalizing polygenic scores were associated with adolescent externalizing behavior, over and above the effect of adolescents’ own externalizing polygenic scores. Mediation analysis indicated that parental externalizing psychopathology partly explained the effect of parental genotype on children’s externalizing behavior. We also found evidence for evocative gene-environment correlation, whereby adolescent externalizing polygenic scores were associated with lower parent–child communication, less parent–child closeness, and lower parental knowledge, controlling for parental genotype. These effects were observed among participants of European ancestry but not African ancestry, likely due to the limited predictive power of polygenic scores across ancestral background. These results demonstrate that in addition to genetic transmission, genes influence offspring behavior through the influence of parental genotypes on their children’s environmental experiences, and the role of children’s genotypes in shaping parent–child relationships.
Biomarkers may be useful endophenotypes for genetic studies if they share genetic sources of variation with the outcome, for example, with all-cause mortality. Australian adult study participants who had reported their parental survival information were included in the study: 14,169 participants had polygenic risk scores (PRS) from genotyping and up to 13,365 had biomarker results. We assessed associations between participants’ biomarker results and parental survival, and between biomarker results and eight parental survival PRS at varying p-value cut-offs. Survival in parents was associated with participants’ serum bilirubin, C-reactive protein, HDL cholesterol, triglycerides and uric acid, and with LDL cholesterol for participants’ fathers but not for their mothers. PRS for all-cause mortality were associated with liver function tests (alkaline phosphatase, butyrylcholinesterase, gamma-glutamyl transferase), metabolic tests (LDL and HDL cholesterol, triglycerides, uric acid), and acute-phase reactants (C-reactive protein, globulins). Association between offspring biomarker results and parental survival demonstrates the existence of familial effects common to both, while associations between biomarker results and PRS for mortality favor at least a partial genetic cause of this covariation. Identification of genetic loci affecting mortality-associated biomarkers offers a route to the identification of additional loci affecting mortality.
Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.
Aims
To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.
Method
This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework.
Results
The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data.
Conclusions
Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.
Evidence of Late Triassic large tetrapods from the UK is rare. Here, we describe a track-bearing surface located on the shoreline near Penarth, south Wales, United Kingdom. The total exposed surface is c. 50 m long and c. 2 m wide, and is split into northern and southern sections by a small fault. We interpret these impressions as tracks, rather than abiogenic sedimentary structures, because of the possession of marked displacement rims and their relationship to each other with regularly spaced impressions forming putative trackways. The impressions are large (up to c. 50 cm in length), but poorly preserved, and retain little information about track-maker anatomy. We discuss alternative, plausible, abiotic mechanisms that might have been responsible for the formation of these features, but reject them in favour of these impressions being tetrapod tracks. We propose that the site is an additional occurrence of the ichnotaxon Eosauropus, representing a sauropodomorph trackmaker, thereby adding a useful new datum to their sparse Late Triassic record in the UK. We also used historical photogrammetry to digitally map the extent of site erosion during 2009–2020. More than 1 m of the surface exposure has been lost over this 11-year period, and the few tracks present in both models show significant smoothing, breakage and loss of detail. These tracks are an important datapoint for Late Triassic palaeontology in the UK, even if they cannot be confidently assigned to a specific trackmaker. The documented loss of the bedding surface highlights the transient and vulnerable nature of our fossil resources, particularly in coastal settings, and the need to gather data as quickly and effectively as possible.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2 factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.
Technical summary
A synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2 factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.
Social media summary
How do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers
$270 \,\mathrm{deg}^2$
of an area covered by the Dark Energy Survey, reaching a depth of 25–30
$\mu\mathrm{Jy\ beam}^{-1}$
rms at a spatial resolution of
$\sim$
11–18 arcsec, resulting in a catalogue of
$\sim$
220 000 sources, of which
$\sim$
180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
To characterize and compare the neuropsychological profiles of patients with primary progressive apraxia of speech (PPAOS) and apraxia of speech with progressive agrammatic aphasia (AOS-PAA).
Method:
Thirty-nine patients with PPAOS and 49 patients with AOS-PAA underwent formal neurological, speech, language, and neuropsychological evaluations. Cognitive domains assessed included immediate and delayed episodic memory (Wechsler Memory Scale-Third edition; Logical Memory; Visual Reproduction; Rey Auditory Verbal Learning Test), processing speed (Trail Making Test A), executive functioning (Trail Making Test B; Delis-Kaplan Executive Functioning Scale – Sorting), and visuospatial ability (Rey-Osterrieth Complex Figure copy).
Results:
The PPAOS patients were cognitively average or higher in the domains of immediate and delayed episodic memory, processing speed, executive functioning, and visuospatial ability. Patients with AOS-PAA performed more poorly on tests of immediate and delayed episodic memory and executive functioning compared to those with PPAOS. For every 1 unit increase in aphasia severity (e.g. mild to moderate), performance declined by 1/3 to 1/2 a standard deviation depending on cognitive domain. The degree of decline was stronger within the more verbally mediated domains, but was also notable in less verbally mediated domains.
Conclusion:
The study provides neuropsychological evidence further supporting the distinction of PPAOS from primary progressive aphasia and should be used to inform future diagnostic criteria. More immediately, it informs prognostication and treatment planning.
Vulture populations are in severe decline across Africa and prioritization of geographic areas for their conservation is urgently needed. To do so, we compiled three independent datasets on vulture occurrence from road-surveys, GPS-tracking, and citizen science (eBird), and used maximum entropy to build ensemble species distribution models (SDMs). We then identified spatial vulture conservation priorities in Ethiopia, a stronghold for vultures in Africa, while accounting for uncertainty in our predictions. We were able to build robust distribution models for five vulture species across the entirety of Ethiopia, including three Critically Endangered, one Endangered, and one Near Threatened species. We show that priorities occur in the highlands of Ethiopia, which provide particularly important habitat for Bearded Gypaetus barbatus, Hooded Necrosyrtes monachus, Rüppell’s Gyps rüppelli and White-backed Gyps africanus Vultures, as well as the lowlands of north-eastern Ethiopia, which are particularly valuable for the Egyptian Vulture Neophron percnopterus. One-third of the core distribution of the Egyptian Vulture was protected, followed by the White-backed Vulture at one-sixth, and all other species at one-tenth. Overall, only about one-fifth of vulture priority areas were protected. Given that there is limited protection of priority areas and that vultures range widely, we argue that measures of broad spatial and legislative scope will be necessary to address drivers of vulture declines, including poisoning, energy infrastructure, and climate change, while considering the local social context and aiding sustainable development.
Wavelength-dispersive X-ray (WDX) spectroscopy was used to measure silicon atom concentrations in the range 35–100 ppm [corresponding to (3–9) × 1018 cm−3] in doped AlxGa1–xN films using an electron probe microanalyser also equipped with a cathodoluminescence (CL) spectrometer. Doping with Si is the usual way to produce the n-type conducting layers that are critical in GaN- and AlxGa1–xN-based devices such as LEDs and laser diodes. Previously, we have shown excellent agreement for Mg dopant concentrations in p-GaN measured by WDX with values from the more widely used technique of secondary ion mass spectrometry (SIMS). However, a discrepancy between these methods has been reported when quantifying the n-type dopant, silicon. We identify the cause of discrepancy as inherent sample contamination and propose a way to correct this using a calibration relation. This new approach, using a method combining data derived from SIMS measurements on both GaN and AlxGa1–xN samples, provides the means to measure the Si content in these samples with account taken of variations in the ZAF corrections. This method presents a cost-effective and time-saving way to measure the Si doping and can also benefit from simultaneously measuring other signals, such as CL and electron channeling contrast imaging.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Mortality risk is known to be associated with many physiological or biochemical risk factors, and polygenic risk scores (PRSs) may offer an additional or alternative approach to risk stratification. We have compared the predictive value of common biochemical tests, PRSs and information on parental survival in a cohort of twins and their families. Common biochemical test results were available for up to 13,365 apparently healthy men and women, aged 17−93 years (mean 49.0, standard deviation [SD] 13.7) at blood collection. PRSs for longevity were available for 14,169 study participants and reported parental survival for 25,784 participants. A search for information on date and cause of death was conducted through the Australian National Death Index, with median follow-up of 11.3 years. Cox regression was used to evaluate associations with mortality from all causes, cancers, cardiovascular diseases and other causes. Linear relationships with all-cause mortality were strongest for C-reactive protein, gamma-glutamyl transferase, glucose and alkaline phosphatase, with hazard ratios (HRs) of 1.16 (95% CI [1.07, 1.24]), 1.15 (95% CI 1.04–1.21), 1.13 (95% CI [1.08, 1.19]) and 1.11 (95% CI [1.05, 1.88]) per SD difference, respectively. Significant nonlinear effects were found for urea, uric acid and butyrylcholinesterase. Lipid risk factors were not statistically significant for mortality in our cohort. Family history and PRS showed weaker but significant associations with survival, with HR in the range 1.05 to 1.09 per SD difference. In conclusion, biochemical tests currently predict long-term mortality more strongly than genetic scores based on genotyping or on reported parental survival.