Apexes of commercial pyramidal silicon scanning microscopy tips were magnetically functionalized by means of local focused electron beam induced deposition. High aspect ratio supertips and local tip coatings with varying apex diameters can be produced by varying exposure time, beam current, and scan mode. The carbonyl precursor Co2(CO)8 was used as source of magnetic metal. Tip performance was tested with magnetic force microscopy (tapping / lift-retrace mode) and magnetically actuated cantilever atomic force microscopy. The deposit contains 34±2 at.% Co, dispersed as 2-5 nm metal nanocrystals in a carbonaceous matrix. Specific surface reactions and Boudouard reactions are proposed to explain the resulting deposit composition measured by Auger spectroscopy. The electrical resistivity is 104 higher than bulk Co resistivity.