We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Thermally stable, amorphous HfO2 thin films deposited using atomic layer deposition have been studied as a diffusion barrier between Cu and the Si substrate. 4 nm thick as-deposited HfO2 films deposited on Si are characterized with X-ray photoelectron spectroscopy. Cu/HfO2/<Si> samples are annealed at different temperatures, starting from 500 °C, in the presence of N2 atmosphere for 5 min and characterized using sheet resistance, X-ray diffraction and scanning electron microscopy. Ultrathin HfO2 films are found to be effective diffusion barrier between Cu and Si with a high failure temperature of about 750 °C.
A capillary bridge printing technique has been used to deposit copper interconnects using homogeneous solutions of a Cu(II) precursor in a series of low boiling primary alcohols. The rheological properties of the solutions have been measured first to determine their printability. The as-printed lines with subsequent annealing at relatively low temperatures (∼200 °C), in order to evaporate the volatile solvents and facilitate dissociation of the precursor deposit, produced conducting interconnects. The precursor has been demonstrated to be self-reducing and requires no reducing environment (e.g. H2) thus making the interconnect formation easier. Moreover, successful decomposition of the precursor into metallic Cu at such low temperatures holds promise for applications involving flexible polymer substrates.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.