We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particle-in-cell simulations. The evolution of the electron beam polarization is studied based on the Thomas–Bargmann–Michel–Telegdi equation for the transverse and longitudinal self-injection, and the depolarization process is found to be influenced by the injection schemes. In the case of transverse self-injection, as found typically in the bubble regime, the spin precession of the accelerated electrons is mainly influenced by the wakefield. However, in the case of longitudinal injection in the quasi-1D regime (for example, F. Y. Li et al., Phys. Rev. Lett. 110, 135002 (2013)), the direction of electron spin oscillates in the laser field. Since the electrons move around the laser axis, the net influence of the laser field is nearly zero and the contribution of the wakefield can be ignored. Finally, an ultra-short electron beam with polarization of $99\%$ can be obtained using longitudinal self-injection.
Chronic rhinosinusitis is a common nasal disorder in children that is prone to recurrence. This study investigated the prevention of chronic rhinosinusitis recurrence with bacteria lysate in children.
Methods:
Bacteria lysate was administered 10 days per month for 3 months to children with chronic rhinosinusitis, who had just entered a remission phase. Visual analogue score, nasal symptoms scores, rhinitis attack frequency and antibiotic use were assessed at three months and one year.
Results:
At one year of follow up, the visual analogue score, nasal discharge and obstruction scores, number of days with rhinitis attacks per month and number of days with antibiotic use per month were significantly decreased in the prevention group versus the control group (p < 0.05).
Conclusion:
Bacterial lysate used in the remission period of rhinosinusitis in children was shown to provide long-term prophylaxis. Bacterial lysate can effectively reduce the frequency of rhinosinusitis attacks and ameliorate attack symptoms.
We derive zphot for sources in the entire (~0.4 deg2) H-HDF-N field with the EAzY code, based on PSF-matched broad-band (U band to IRAC 4.5 μm) photometry. Our catalog consists of a total of 131,678 sources. We find σNMAD = 0.029 for non-X-ray sources. We also classify each object as a star or galaxy through SED fitting. Furthermore, we match our catalog with the 2 Ms CDF-N main X-ray catalog. For the 462 matched non-stellar X-ray sources, we improve their zphot quality (σNMAD = 0.035) by adding three additional AGN templates. We make our photometry and zphot catalog publicly available.
We investigated the seasonality of tuberculosis (TB) in Wuhan, China, to evaluate the increased risk of disease transmission during each season and to develop an effective TB control strategy. We applied spectral analysis to the weekly prevalence data of sputum smear positive (SSP) and sputum smear negative (SSN) pulmonary TB reported from 2006 to 2010. Cases of both SSP and SSN feature 1·0- and 0·5-year periodic modes. The least squares method was used to fit curves to the two periodic modes for SSP and SSN data. The curves demonstrated dominant peaks in spring similar to cases reported previously for other locations. Notably for SSP, dominant peaks were also observed in summer. The spring peaks of SSP and SSN were explained in terms of poorly ventilated and humid rooms and vitamin D deficiency. For the summer peaks of SSP, summer influenza epidemics in Wuhan may contribute to the increase in TB prevalence.
The 2009 novel H1N1 influenza pandemic had a significant impact on Shenzhen's population with 2063 laboratory-confirmed human H1N1 cases and five deaths being reported. We used parameters from two population-based surveys and the Shenzhen Influenza Surveillance System to estimate the total number of H1N1 influenza infections in Shenzhen in the 2009 pandemic. The attack rate of influenza-like illness (ILI) in family households was 11·2% (95% CI 9·4–13·0), with 80·2% (95% CI 77·8–82·5) seeking medical care. The ILI attack rate in workers was 38·1% (95% CI 34·3–41·7) with 72·5% (95% CI 66·9–78·0) seeking medical care. The average H1N1 positive rate in individuals reporting ILI and testing by polymerase chain reaction was 22·7%. A total of 611 000–768 000 people, or 4·7–5·9% of the Shenzhen population, are estimated to have experienced H1N1 influenza. The estimated total number of cases of H1N1 is likely to be 330 times greater than the number of laboratory-confirmed cases.
The electric field intensity distribution and the phase velocity distribution of a slit in laser beams with different parameters are analyzed. Using three-dimensional test particle simulation, the laser beam with a slit induced acceleration of electrons with different initial momenta is investigated. Contrary to anticipation, the maximum net energy gain is not monotone increasing as the incoming momentum increasing. Based on the field structure and analysis, we gave an explanation for this.
The radiative reaction effect of an electron is usually very small and can be neglected in most cases. But for an ultra intensity laser-electron interaction region, the radiation can become large. The influence of the radiative reaction effect of an electron interacting with an ultra intense laser pulses in vacuum on electron dynamics is investigated within the classical relativistic Lorentz-Dirac approach. A predictor-corrector method is proposed to numerically solve the equation of motion with the electron radiative reaction included. We study the counter-propagating case (for Thomson scattering scheme) and the same direction propagating cases (for laser acceleration). Our simulation results show that radiation can have great effect in the counter-propagating case. But in the vacuum laser electron acceleration regime, both the ponderomotive acceleration scenario case and the capture and acceleration scenario, radiative reaction effect can totally be ignored for laser intensity available presently or in the near-future.
The present study was conducted to determine the effects of a polysaccharide of Atractylodes macrophala Koidz (PAM) as a dietary additive on growth performance, immunoglobulin concentration and IL-1β expression in weaned piglets. One hundred and twenty Landrace×Yorkshire piglets weaned at 28 days old (body weight 7·5±0·07 kg) were assigned to five treatment groups (three pens/group, eight piglets/pen) fed maize/soybean-based diets supplemented with 0, 3, 6 or 9 g of PAM/kg diet or antibiotics (0·4 g flavomycin/kg+0·13 g olaquindox/kg). The experimental period was 28 days. With increasing PAM supplementation levels, average daily gain was greater (quadratic, P<0·05) and the ratio of amount fed to live weight (LW) gain (feed/gain) improved (quadratic, P<0·05) during days 14–28 and overall, and diarrhoea incidence decreased (linear, P<0·05) during days 14–28. Supplementation of PAM also increased (quadratic, P<0·05) serum concentrations of interleukin (IL)-2 and IL-6 on day 14, and increased (quadratic, P<0·05) IL-1β expression in jejunal mucosa and lymph nodes. Concentrations of PAM between 6 and 9 g/kg presented the strongest bioactivity compared to the control group or antibiotic-fed group. These findings indicate that PAM is effective in improving growth performance and cytokine response, which suggests that PAM can be used as a diet additive for weanling piglets.
Particulate organic matter (POM), dissolved organic matter (DOM), bacteria and cladoceran were sampled seasonally atZhihugang Estuary and Lake Center in Taihu Lake. The δ13C of the four organic matter fractions showed consistent temporalvariation, with heaviest values in summer and lower at other times of the year. The cladoceran δ13C showed a significantcorrelation with that of POM, reflecting a heavy dietary dependence on POM during the study period. The bacteria becameenriched in 13C compared with that of DOM throughout the sampling dates, although no significant relationship was foundbetween the two fractions. δ13C values of POM, cladoceran and bacteria were all negative significantly correlated with oxidationand reduction potential (ORP), and specific conductivity (SpCond). As for δ15N, the seasonal pattern of food web componentswas variable. The POM δ15N signature exhibited the most enriched isotope ratios during the summer months when dissolvedinorganic nitrogen (DIN) nutrients were at their lowest concentrations. The consumption of DIN in summer can explain in partthe progressive accumulation of heavy nitrogen isotopes during this period. Spatially, δ13C and δ15N of the food web componentswere all slightly depleted at Estuary than that at Lake Center during the study period, possibly due to large allochthonous inputsat Zhihugang Estuary. Relatively wide ranges of stable isotopic values from both sites suggest that seasonality should beconsidered when attempting to establish food web structures in a eutrophic lake.
Bifurcation phenomenon in the energy-angular correlation spectrum of the vacuum laser acceleration has been observed with computer simulation. Concerning a focused laser pulse, the classical single-valued energy-angular correlation spectrum for a plane wave is, besides broadened to a band, bifurcated with the classical value in between the two branches. Analytic expression to describe the correlation has been derived and physical explanations based on the ponderomotive potential model and Lorentz-Newton force analyses are presented. The theoretical results are supported by numerical simulations which have been compared with the experimental results. This study is helpful in designing vacuum laser acceleration experiments.
Concerning laser-driven electron acceleration in vacuum, a comparison was made between using circularly polarized (CP) laser field and linearly polarized (LP) field. It has been found that the main advantage for using CP field is that its acceleration channel occupies relatively larger phase space, which can give rise to greater acceleration efficiency. This feature chiefly comes from the difference in the distribution of the longitudinal electric components of these two kinds of fields. One of the disadvantages with CP field is the “energy saturation” phenomenon as the laser intensity is sufficiently high, resulting from the enhanced Lorentz force component in CP field. Physical explanations of these characteristics are addressed as well.
The objectives of this study were to determine true phosphorus (P) digestibility, degradability of phytate-P complex and the endogenous P outputs associated with brown rice feeding in weanling pigs by using the simple linear regression analysis technique. Six barrows with an average initial body weight of 12.5 kg were fitted with a T-cannula and fed six diets according to a 6 × 6 Latin-square design. Six maize starch-based diets, containing six levels of P at 0.80, 1.36, 1.93, 2.49, 3.04, and 3.61 g/kg per kg dry-matter (DM) intake (DMI), were formulated with brown rice. Each experimental period lasted 10 days. After a 7-day adaptation, all faecal samples were collected on days 8 and 9. Ileal digesta samples were collected for a total of 24 h on day 10. The apparent ileal and faecal P digestibility values of brown rice were affected ( P < 0.01) by the P contents in the assay diets. The apparent ileal and faecal P digestibility values increased from − 48.0 to 36.7% and from − 35.6 to 40.0%, respectively, as P content increased from 0.80 to 3.61 g/kg DMI. Linear relationships ( P < 0.05), expressed as g/kg DMI, between the apparent ileal and faecal digestible P and dietary levels of P, suggested that true P digestibility and the endogenous P outputs associated with brown rice feeding could be determined by using the simple regression analysis technique. There were no differences ( P>0.05) in true P digestibility values (57.7 ± 5.4 v. 58.2 ± 5.9%), phytate P degradability (76.4 ± 6.7 v. 79.0 ± 4.4%) and the endogenous P outputs (0.812 ± 0..096 v. 0.725 ± 0.083 g/kg DMI) between the ileal and the faecal levels. The endogenous faecal P output represented 14 and 25% of the National Research Council (1998) recommended daily total and available P requirements in the weanling pig, respectively. About 58% of the total P in brown rice could be digested and absorbed by the weanling pig. Our results suggest that the large intestine of the weanling pigs does not play a significant role in the digestion of P in brown rice. Diet formulation on the basis of total or apparent P digestibility with brown rice may lead to P overfeeding and excessive P excretion in pigs.
We study the spectrum of regular and singular Sturm–Liouville problems with real-valued coefficients and a weight function that changes sign. The self-adjoint boundary conditions may be regular or singular, separated or coupled. Sufficient conditions are found for (i) the spectrum to be real and unbounded below as well as above and (ii) the essential spectrum to be empty. Also found is an upper bound for the number of non-real eigenvalues. These results are achieved by studying the interplay between the indefinite problems (with weight function which changes sign) and the corresponding definite problems. Our approach relies heavily on operator theory of Krein space.
We consider some geometric aspects of regular Sturm—Liouville problems. First, we clarify a natural geometric structure on the space of boundary conditions. This structure is the base for studying the dependence of Sturm—Liouville eigenvalues on the boundary condition, and reveals many new properties of these eigenvalues. In particular, the eigenvalues for separated boundary conditions and those for coupled boundary conditions, or the eigenvalues for self-adjoint boundary conditions and those for non-self-adjoint boundary conditions, are closely related under this structure. Then we give complete characterizations of several subsets of boundary conditions such as the set of self-adjoint boundary conditions that have a given real number as an eigenvalue, and determine their shapes. The shapes are shown to be independent of the differential equation in question. Moreover, we investigate the differentiability of continuous eigenvalue branches under this structure, and discuss the relationships between the algebraic and geometric multiplicities of an eigenvalue.
Hydrogenated nanocrystalline silicon (nc-Si:H) films with room temperature luminescence have been prepared in a PECVD system. Heavily H2 diluted silane and large negative bias accompanying low deposition temperature are used to decrease the crystalline size. The films comprise nanocrystallites surrounded by an interfacial phase with wurtzite structure characterized by 495cm−1 feature in the Raman spectrum. The X-ray diffraction spectrum shows the average grain size is about 4-5nm. The room temperature photoluminescence (PL) spectrum consists of two peaks, one at 2.21eV which may be induced by the transitions of the quantum subbands in the nanocrystalline phase, the other at 2.84eV which may be attributed to some kinds of localized centers in the interfacial phase. The photoluminescence excitation (PLE) spectrum also shows two peaks, a low one at 3.4eV approaching the bulk like transitions between Г25'V-Г15c while the high energy envelope around 5.0eV has a complicated configuration, and might be related to both the bulk like transition between Λ3v-Λ3cand band transitions of (Si-H2)n chains.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.