We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia.
Methods
We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks.
Results
Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time.
Conclusions
Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
This study investigates the molecular intricacies of the transmembrane protein TSP11 gene in Echinococcus strains isolated from livestock and patients in Yunnan Province afflicted with Echinococcus granulosus (E. granulosus) between 2016 and 2020. Gene typing analysis of the ND1 gene revealed the presence of the G1 type, G5 type and untyped strains, constituting 52.4, 38.1 and 9.5%, respectively. The analysis of 42 DNA sequences has revealed 24 novel single nucleotide polymorphic sites, delineating 11 haplotypes, all of which were of the mutant type. Importantly, there were no variations observed in mutation sites or haplotypes in any of the hosts. The total length of the TSP11 gene's 4 exons is 762 bp, encoding 254 amino acids. Our analysis posits the existence of 6 potential B-cell antigenic epitopes within TSP11, specifically at positions 49-KSN-51, 139-GKRG-142, 162-DNG-164, 169-NGS-171, 185-DS-186 and 231-PPRFTN-236. Notably, these epitopes exhibit consistent presence among various intermediate hosts and haplotypes. However, further validation is imperative to ascertain their viability as diagnostic antigens for E. granulosus in the Yunnan Province.
Trilocha varians is one of the major pests of Ficus spp. Based on 19 bioclimatic variables provided by the Worldclim, our study analysed the suitable distribution areas of T. varians under current and future climate changes (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two periods (the 2050s and 2090s) using the maximum entropy algorithm (MaxEnt) model. Key environmental variables affecting the geographic distribution of T. varians were also identified, and the changes in the area of suitable range under current and future climate changes were compared. The results showed that the key environmental variables affecting the distribution of T. varians were temperature and precipitation, comprising annual mean temperature (bio1), temperature seasonality (standard deviation × 100) (bio4), precipitation of driest month (bio14), and precipitation of driest quarter (bio17). Under the current climatic conditions, the suitable distribution area of T. varians is within the range of 92°13′E–122°08′E, 18°17′N–31°55′N. The current high, medium, and low suitable areas for T. varians predicted by the MaxEnt model are 14.00 × 104, 21.50 × 104, and 71.95 × 104 km2, of which the high suitable areas are mainly distributed in southern Guangdong, southwestern Guangxi, western Taiwan, Hong Kong, and Hainan. Under different future climatic conditions, some of the high, medium, and low suitability zones for T. varians increased and some decreased, but the mass centre did not migrate significantly. The Pearl River Basin is predicted to remain the main distribution area of T. varians.
Traditional therapies are crucial in maintaining and improving human well-being. China’s healthcare policymakers are attempting to use health technology assessment (HTA) as a decision-making supportive tool. The value assessment framework for Chinese patent medicine (CPM) has been developed and is being adopted and validated widely by research institutions. Subsequently, the healthcare decision-makers particularly hanker for the value framework of traditional non-pharmacological therapies.
Methods
To construct a practical value framework for traditional non-pharmacological therapies, a scoping review methodology was adopted to identify the evaluation domains and obstacles. A search, screening, and analysis process was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Evidence was retrieved from scientific databases and HTA agencies’ websites.
Results
The search strategy identified 5 guidelines records and 17 acupuncture HTA reports. By synthesizing the valuable reports of CPM and acupuncture evaluation in representative countries, this study found that Mainland China was promoting the comprehensive value assessment of CPM, whereas the United Kingdom, Singapore, Canada, the United States, and Malaysia had carried out the HTA evaluation of acupuncture for various conditions among which chronic pain was the most common. UK and Singapore applied the HTA results to support acupuncture reimbursement decisions. Three domains, including safety, effectiveness, and economy, were commonly adopted. The identified biggest challenge of evaluating traditional non-pharmacological therapies is the scarce high-quality clinical evidence.
Conclusions
This study identified value domains and issues of traditional therapies, and pointed out future research implications, to promote the development value framework of traditional therapies.
The efficient separation of hexane isomers from the light naphtha fraction is a significant challenge in the petrochemical industry. 5A zeolite adsorbent is used commercially to sieve alkane isomers. In this study, 5A zeolites were synthesized using a low-cost natural clay mineral precursor, i.e. palygorskite (PAL), with the addition of crystallization directing agent (CDA). By varying the mass ratio of CDA/deionized water, 5A zeolites were obtained as CDA-5%, CDA-7.5%, and CDA-10%. All products were submicron particles with an average particle size of 400–800 nm. A sieving test of CDA-induced 5A zeolites was carried out on hexane adsorbates including n-hexane (nHEX), 2-methylpentane (2MP), and 3-methylpentane (3MP). According to vapor-phase batch adsorption experiments, a significant equilibrium amount (0.149 g/g) of nHEX and only 0.0321 g/g 2MP and 0.0416 g/g 3MP were adsorbed on the 5A zeolite product with CDA-5%. The dynamic adsorption performance of 5A zeolite (CDA-5%) was evaluated by breakthrough curves of binary mixtures of nHEX/2MP and nHEX/3MP. Palygorskite 5A (PAL 5A) zeolite achieved maximum dynamic adsorption capacities of nHEX (0.16 g/g in both cases) at 200°C and 1.2 MPa total pressure. This work provided an economic alternative for the synthesis of 5A zeolites using natural clay minerals instead of chemical raw materials.
Photocatalytic degradation of polluted water by means of minerals, such as clays and oxides, which have surfaces that exhibit catalytic properties, has been suggested to be a useful new strategy to promote both organic and inorganic pollutant degradation. Nevertheless, much still remains to be studied about the capability of mixed metal oxides derived from lanthanum-containing layered double hydroxides to promote pollutant removal by means of photocatalytic degradation with the mineral surfaces. The objective of the present study was to investigate the synthesis of ternary MgAlLa mixed-metal oxides (MgAlLa-M) with various Mg/Al/La molar ratios through a hydrotalcite-like precursor route by co-precipitation of appropriate amounts of metal salts from homogeneous solution, followed by calcination at 600°C. The crystal structure, surface morphology, and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis diffuse reflectance spectroscopy (DRS). Analysis by XRD showed that MgO, La2O3, MgAl2O4, and La10Al4O21 phases coexisted in calcined samples as MgAlLa-M. The samples showed a small band gap of 3.11–3.35 eV according to DRS. The photocatalytic activities of the samples were evaluated by degradation of methylene blue (MB) under visible light irradiation. MgAlLa-M had better photocatalytic properties than hydrotalcite precursors, and the MgAlLa-0.5-M possessed the best photocatalytic activity. The photocatalytic degradation efficiency of MB dye with MgAlLa-0.5-M under visible light irradiation for 1 h was 99.89% in the presence of H2O2, which exceeded the binary MgAl-M (84.06%) under the same conditions. The high photocatalytic activity of the sample was attributed to the addition of La(III). In addition, the possible mechanism of photocatalytic degradation of MB by MgAlLa-M was discussed. The results showed that •O2– plays a major role in the MgAlLa-0.5-M/H2O2 system.
Parasitoid wasps, notably egg parasitoids of the family Eupelmidae (Hymenoptera: Chalcidoidea), a key natural enemy of insect pests, offer a sustainable approach to pest management in agriculture. This study investigated the venom apparatus's developmental dynamics across 4 species of eupelmid egg parasitoids: Anastatus. japonicus, Anastatus fulloi, Mesocomys trabalae and Mesocomys albitarsis. A comprehensive anatomical investigation revealed differences in the dimensions of the venom apparatus across different developmental stages in adult females. We found that the venom apparatus of these 4 studied species consists of a venom gland and a reservoir with an associated Dufour's gland. As the length of post-emergence increases, a significant enlargement in the venom apparatus is evident across all the studied parasitoid species. Notably, M. albitarsis consistently exhibites the shortest venom gland length, whereas that of A. fulloi is the longest among the observed species. At the high day age, the width of venom glands of the 2 Mesocomys species surpasses those of the Anastatus species; for the volume of the venom reservoir, there is a steady increase in all 4 species before the age of 6–7 days, with a decline on 8th day, especially for A. japonicus. This research provided new insights into the developmental trajectories of venom apparatus in eupelmid egg parasitoids and the potential impact of venom potency on their success.
Increasing evidence shows that maternal hyperglycemia inhibits cardiomyocyte (CM) proliferation and promotes cell apoptosis during fetal heart development, which leads to cardiac dysplasia. Accumulating evidence suggests that the overexpression of miR-21 in CMs has a protective role in cardiac function. Therefore, we investigated whether miR-21 can rescue CM injury caused by high glucose. First, we performed biological function analysis of miR-21-5p overexpression in H9c2 cells treated with high glucose. We found that the proliferation of H9c2 cells treated with high glucose decreased significantly and was rescued after overexpression of miR-21-5p. CCK-8 and EdU incorporation assays were performed to assess cell proliferation. The cell proliferation of the miR-21-5p mimic transfection group was improved compared with that of the NC mimic group (*p < 0.05, miR-21-5p mimics vs. NC mimics) when the proliferation of H9c2 cells was reduced by high glucose (****p < 0.0001, high glucose (HG) vs. normal glucose (NG)). Then, we verified the targeted and negative regulation of miR-21-5p on Rhob using a dual-luciferase activity assay and RT-qPCR, respectively. We further demonstrated that miR-21-5p regulates Rhob to rescue the inhibition of CM proliferation induced by high glucose. The CCK-8 results showed that the cell proliferation of the siRNA-Rhob group was higher than that of the NC mimic group (***p < 0.001) and that of the cotransfection group with Up-Rhob plasmids and miR-21-5p mimics was lower than that of the miR-21-5p mimic group (*p < 0.05). Conclusion: Overexpression of miR-21-5p rescues the inhibition of high glucose-induced CM proliferation through regulation of Rhob.
The silkworm Bombyx mori (Lepidoptera: Bombycidae) is a lepidopteran model insect of great economic importance. The parasitoid Exorista sorbillans (Diptera, Tachinidae) is the major pest of B. mori and also a promising candidate for biological control. However, the molecular interactions between hosts and dipteran parasitoids have only partially been studied. Gene expression analysis by reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is indispensable to characterise their interactions. Accurate normalisation of RT-qPCR-based gene expression requires the use of reference genes that are constantly expressed irrespective of experimental conditions. In this study, the expression stability of 13 traditionally used reference genes was estimated by five statistical algorithms (ΔCt, geNorm, Normfinder, BestKeeper, and RefFinder) to determine the best reference genes for gene expression studies in different tissues of B. mori under E. sorbillans parasitism. Specifically, TATA-box-binding protein was the best reference gene in epidermis and testis, while elongation factor 1α was the most stable gene in prothoracic gland and midgut. Elongation factor 1γ, ribosomal protein L3, actin A1, ribosomal protein L40, glyceraldehyde-3-phosphate dehydrogenase and eukaryotic translation initiation factor 4A were the most suitable genes in head, silk gland, fat body, haemolymph, Malpighian tubule and ovary, respectively. Our study offers a set of suitable reference genes for gene expression normalisation in B. mori under the parasitic stress of E. sorbillans, which will benefit the in-depth exploration of host-dipteran parasitoid interactions, and also provide insights for further improvements of B. mori resistance against parasitoids and biocontrol efficacy of dipteran parasitoids.
Post-event rumination (PER) has been seen as a key element in the persistence of social anxiety (disorder). Studies on PER-targeted intervention, e.g., cognitive restructuring (CR), has, however, received little attention in adults, not yet in youth. In addition, previous research showed that, compared to interaction, participants reported higher levels of PER after speech task. The main aim of the present study was to investigate the effect of CR targeting PER among socially anxious (Chinese) adolescents and also to compare the intervention effect between speech and interaction situations. The present study recruited a sample of 73 high socially anxious adolescents aged 12–16 years and then randomly assigned them into speech (n = 37) or interaction (n = 36) group, without control group. PER and social anxiety (SA) were measured before and after CR. Analysis of Covariance (ANCOVA) results showed that adolescents’ PER and SA symptoms were significantly improved with intervention with moderate to high effect size. Furthermore, the decrease in PER could significantly predict the improvement of SA. However, the intervention effect showed no difference between groups. Although no control group was included, one-session CR still showed its potential to improve participants’ PER and SA. Limitations and future directions were discussed.
Toll-interacting protein (Tollip) participates in multiple biological processes. However, the biological functions of Tollip proteins in insects remain to be further explored. Here, the genomic sequence of tollip gene from Antheraea pernyi (named Ap-Tollip) was identified with a length of 15,060 bp, including eight exons and seven introns. The predicted Ap-Tollip protein contained conserved C2 and CUE domains and was highly homologous to those tollips from invertebrates. Ap-Tollip was highly expressed in fat body compared with other determined tissues. As far as the developmental stages were concerned, the highest expression level was found at the 14th day in eggs or the 3rd day of the 1st instar. Ap-Tollip was also obviously regulated by lipopolysaccharide, polycytidylic acid or 20E in different tissues. In addition, the interaction between Ap-Tollip and ubiquitin was confirmed by western blotting and pull-down assay. RNAi of Ap-Tollip significantly affected the expression levels of apoptosis and autophagy-related genes. These results indicated that Ap-Tollip was involved in immunity and development of A. pernyi.
State capitalism and the liberal economic order have had an antagonistic relationship. While the international economic law rules have sought to reduce the role of the state in the economy, state-controlled entities have more recently increased in size and importance – both domestically, as well as internationally. In this connection, the article analyses the effects of state capitalism's expansion simultaneously with the domestic investment law of States. The article analyses the underlying principles of state capitalism in an effort to answer the question of whether domestic laws promoting investment – as defined in the special issue – are positive, negative, or neutral to state capitalists. The article further interprets the trends spawned by the propagation of the liberal international economic order as states realize their development targets and envisage to actively contribute to the regulation of international trade and cross-border transactions globally.
We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification, hollow-core fiber (HCF) and second harmonic generation processes. In this setup, the spectrum of an approximately 1.8 μm laser pulse has near 1 μm full bandwidth by employing an argon gas-filled HCF. Subsequently, after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair, 9.6 fs (~3 cycles) and 150 μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated. The energy stability of the output laser pulse is excellent with 0.8% (root mean square) over 20 min, and the temporal contrast is >1012 at –10 ps before the main pulse. The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.
Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD.
Methods
To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses.
Results
We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance.
Conclusions
Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.
For the omnivorous Cherax quadricarinatus crayfish, plant raw materials can be good alternatives to dietary fish meal (FM). A 56-d feeding trial was conducted in C. quadricarinatus (11·70 (se 0·13) g). Diet with 100 % FM as the protein source was the control. Seven experimental diets were formulated by replacing 75 or 100 % of FM with soyabean meal (SM75, SM100) or cottonseed meal (CM75 and CM100), and a mixture of SM and CM (protein content is 1:1) replacing 50, 75 or 100 % of FM (SC50, SC75 and SC100). Crayfish fed the CM100 and SC100 showed significantly lower weight gain (WG), specific growth rate, trypsin and pepsin activities compared with the control diet. Crayfish in CM100 group showed significantly higher GPx, alanine aminotransferase, aspartate aminotransferase activities and malondialdehyde content than the control. SM100 and CM100 diets can cause slight separation of the peritrophic membrane from the intestinal folds. The pepsin activity of crayfish in SC50 was significantly higher than those in other experimental diets. The highest WG and muscle arginine content were also found in crayfish fed SC50. The relative abundance of Proteobacteria, Unclassified Enterobacteriaceae and Candidatus Bacilloplasma was significantly higher, but Actinobacteriota was significantly lower in SM100, CM100 and SC100 than in control. Microbiota functional prediction indicated that the relative abundance of ‘cell motility’ pathway in crayfish fed CM100 was significantly decreased compared with the control. In conclusion, only half of the FM can be effectively substituted with a mixture of SM and CM (protein content is 1:1) for C. quadricarinatus.
Two new species of the lichenized genus Lasioloma are described from Asia: Lasioloma longiramosum W. C. Wang & A. Abas (collected from Malaysia), is characterized by a distinct woolly prothallus between dispersed thallus patches, comparatively small, muriform ascospores, long filiform conidia (main branch 22–28 μm in length, the other three branches 65–80 μm) and a foliicolous habitat; L. verrucosum W. C. Wang & X. L. Wei (collected from China), is characterized by a warted thallus, filiform conidia (main branch 22–32 μm in length, the other three branches 50–65 μm) and a corticolous habitat. The placement of both new species was confirmed by a molecular phylogenetic approach based on combined ITS, mtSSU and mtLSU sequences, and both are compared in detail to other similar species of the genus. Our study also revealed that the length of the conidial branches, which has not been explored in previous studies, should be regarded as an important feature for species delimitation in Lasioloma.
Maternal gestational weight gain (GWG) is an important determinant of infant birth weight, and having adequate total GWG has been widely recommended. However, the association of timing of GWG with birth weight remains controversial. We aimed to evaluate this association, especially among women with adequate total GWG. In a prospective cohort study, pregnant women’s weight was routinely measured during pregnancy, and their GWG was calculated for the ten intervals: the first 13, 14–18, 19–23, 24–28, 29–30, 31–32, 33–34, 35–36, 37–38 and 39–40 weeks. Birth weight was measured, and small-for-gestational-age (SGA) and large-for-gestational-age were assessed. Generalized linear and Poisson models were used to evaluate the associations of GWG with birth weight and its outcomes after multivariate adjustment, respectively. Of the 5049 women, increased GWG in the first 30 weeks was associated with increased birth weight for male infants, and increased GWG in the first 28 weeks was associated with increased birth weight for females. Among 1713 women with adequate total GWG, increased GWG percent between 14 and 23 weeks was associated with increased birth weight. Moreover, inadequate GWG between 14 and 23 weeks, compared with the adequate GWG, was associated with an increased risk of SGA (43 (13·7 %) v. 42 (7·2 %); relative risk 1·83, 95 % CI 1·21, 2·76). Timing of GWG may influence infant birth weight differentially, and women with inadequate GWG between 14 and 23 weeks may be at higher risk of delivering SGA infants, despite having adequate total GWG.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
In early 2018, China announced the establishment of a special court system to resolve disputes arising out of Belt and Road Initiative (BRI) projects, the China International Commercial Court (CICC). This chapter contributes to the emerging literature on hybrid courts by providing the first comprehensive analysis of the China International Commercial Court. The chapter submits that the CICC corresponds to a new stage of regulatory (and economic) development reached by China which demonstrates the country’s ambition to strengthen the rule of law for a number of economic transactions which are key for the country’s future economic development. This chapter critically reviews the genesis of the CICC, its anatomy and problematic features. The analysis places the CICC in the broader context of China’s economic and regulatory development, in particular with respect to the existing domestic courts (in China and other BRI countries) as well as with respect to many arbitration centres already in place (in China and other BRI countries).