We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Machine learning (ML) models have been developed to identify randomised controlled trials (RCTs) to accelerate systematic reviews (SRs). However, their use has been limited due to concerns about their performance and practical benefits. We developed a high-recall ensemble learning model using Cochrane RCT data to enhance the identification of RCTs for rapid title and abstract screening in SRs and evaluated the model externally with our annotated RCT datasets. Additionally, we assessed the practical impact in terms of labour time savings and recall improvement under two scenarios: ML-assisted double screening (where ML and one reviewer screened all citations in parallel) and ML-assisted stepwise screening (where ML flagged all potential RCTs, and at least two reviewers subsequently filtered the flagged citations). Our model achieved twice the precision compared to the existing SVM model while maintaining a recall of 0.99 in both internal and external tests. In a practical evaluation with ML-assisted double screening, our model led to significant labour time savings (average 45.4%) and improved recall (average 0.998 compared to 0.919 for a single reviewer). In ML-assisted stepwise screening, the model performed similarly to standard manual screening but with average labour time savings of 74.4%. In conclusion, compared with existing methods, the proposed model can reduce workload while maintaining comparable recall when identifying RCTs during the title and abstract screening stages, thereby accelerating SRs. We propose practical recommendations to effectively apply ML-assisted manual screening when conducting SRs, depending on reviewer availability (ML-assisted double screening) or time constraints (ML-assisted stepwise screening).
The interaction between planar incident shocks and cylindrical boundary layers is prevalent in missiles equipped with inverted inlets, which typically leads to substantial three-dimensional flow separation and the formation of vortical flow. This study utilizes wind-tunnel experiments and theoretical analysis to elucidate the shock structure, surface topology and pressure distributions induced by a planar shock with finite width impinging on a cylinder wall at Mach 2.0. In the central region, a refraction phenomenon occurs as the transmitted shock bends within the boundary layer, generating a series of compression waves that coalesce into a shock, forming a ‘shock triangle’ structure. As the incident shock propagates backward along both sides, it gradually evolves into a Mach stem, where the transmitted shock refracts the expansion wave. The incident shock interacts with the boundary layer, resulting in the formation of a highly swept separation region that yields a pair of counter-rotating horseshoe-like vortices above the separation lines. These vortices facilitate the accumulation of low-energy fluid on both sides. Although the interaction of the symmetry plane aligns with free-interaction-theory, the separation shock angle away from the centre significantly deviates from the predicted value owing to the accumulation of low-energy fluids. The primary separation line and pressure distribution jointly exhibit an elliptical similarity on the cylindrical surface. Furthermore, the potential unsteady behaviour is assessed, and the Strouhal number of the low-frequency oscillation is found to be 0.0094, which is insufficient to trigger significant alterations in the flow field structure.
The desert locust (Schistocerca gregaria) is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security. In this study, we combined the maximum entropy modelling and geographic information system technology to conduct a comprehensive analysis of the impact of climate change on the distribution patterns and habitat adaptability of desert locusts. The results indicate that the suitable areas for desert locusts (0.2976 × 108 km2) are concentrated in northern Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key environmental variables affecting the desert locust distribution include temperature annual range, mean temperature of the coldest quarter, average temperature of February, and precipitation of the driest month. Under the SSP1–2.6 and SSP5–8.5 climate scenarios, potential suitable areas for desert locusts are estimated to increase from 2030 (2021–2040) to 2090 (2081–2100). By 2090, highly suitable areas for SSP1–2.6 and SSP5–8.5 are projected to be 0.0606 × 108 and 0.0891 × 108 km2, respectively, reflecting an expansion of 1.84 and 2.77% compared to existing ones. These research findings provide a theoretical basis for adopting prevention and control strategies for desert locusts.
Measures of agreement are used in a wide range of behavioral, biomedical, psychosocial, and health-care related research to assess reliability of diagnostic test, psychometric properties of instrument, fidelity of psychosocial intervention, and accuracy of proxy outcome. The concordance correlation coefficient (CCC) is a popular measure of agreement for continuous outcomes. In modern-day applications, data are often clustered, making inference difficult to perform using existing methods. In addition, as longitudinal study designs become increasingly popular, missing data have become a serious issue, and the lack of methods to systematically address this problem has hampered the progress of research in the aforementioned fields. In this paper, we develop a novel approach to tackle the complexities involved in addressing missing data and other related issues for performing CCC analysis within a longitudinal data setting. The approach is illustrated with both real and simulated data.
EXOSC10 is an exosome-associated ribonuclease that degrades and processes a wide range of transcripts in the nucleus. The initial segment (IS) of the epididymis is crucial for sperm transport and maturation in mice by affecting the absorption and secretion that is required for male fertility. However, the role of EXOSC10 ribonuclease-mediated RNA metabolism within the IS in the regulation of gene expression and sperm maturation remains unknown. Herein, we established an Exosc10 conditional knockout (Exosc10 cKO) mouse model by crossing Exosc10F/F mice with Lcn9-Cre mice which expressed recombinase in the principal cells of IS as early as post-natal day 17. Morphological and histological analyses revealed that Exosc10 cKO males had normal spermatogenesis and development of IS. Moreover, the sperm concentration, morphology, motility, and frequency of acrosome reactions in the cauda epididymides of Exosc10 cKO mice were comparable with those of control mice. Thus, Exosc10 cKO males had normal fertility. Collectively, our genetic mouse model and findings demonstrate that loss of EXOSC10 in the IS of epididymis is dispensable for sperm maturation and male fertility.
We aimed to evaluate the association of coffee consumption with different additives, including milk and/or sweetener (sugar and/or artificial sweetener), and different coffee types, with new-onset acute kidney injury (AKI), and examine the modifying effects of genetic variation in caffeine metabolism. 194 324 participants without AKI at baseline in the UK Biobank were included. The study outcome was new-onset AKI. During a median follow-up of 11·6 years, 5864 participants developed new-onset AKI. Compared with coffee non-consumers, a significantly lower risk of new-onset AKI was found in coffee consumers adding neither milk nor sugar to coffee (hazard ratio (HR), 0·86; 95 % CI, 0·78, 0·94) and adding only milk to coffee (HR,0·83; 95 % CI, 0·78, 0·89), but not in coffee consumers adding only sweetener (HR,1·14; 95 % CI, 0·99, 1·31) and both milk and sweetener to coffee (HR,0·96; 95 % CI, 0·89, 1·03). Moreover, there was a U-shaped association of coffee consumption with new-onset AKI, with the lowest risk at 2–3 drinks/d, in unsweetened coffee (no additives or milk only to coffee), but no association was found in sweetened coffee (sweetener only or both milk and sweetener to coffee). Genetic variation in caffeine metabolism did not significantly modify the association. A similar U-shaped association was found for instant, ground and decaffeinated coffee consumption in unsweetened coffee consumers, but not in sweetened coffee consumers. In conclusion, moderate consumption (2–3 drinks/d) of unsweetened coffee with or without milk was associated with a lower risk of new-onset AKI, irrespective of coffee type and genetic variation in caffeine metabolism.
Toroidal bubbles (TBs) represent cases of vortex rings with a gas–liquid interface where a gas vortex ring is encased within a liquid vortex ring, and can serve as effective media for mass conveyance, process mixing, noise reduction and reaction regulation. In this study, we carry out a systematic study on the interaction between a TB and a free surface. According to the high-speed photographic images from the experiments, we identify strong and weak interactions in terms of the normalized maximum free surface deformation $h_{max}^*$. Then, we perform numerical simulations based on the volume of fluid (VOF) method in the OpenFOAM platform. Based on both the experimental and the numerical results, we conclude that the Froude number, $Fr$, determines the main characteristics during the interaction process. The TB–free surface interaction is essentially the interaction between the liquid vortex ring enveloping the TB and the free surface, supplemented by the TB's complex behaviour. Next, we establish the scaling law of $h_{max}^*$ based on the energy balance condition. Based on this, we provide the critical $Fr$ and the slenderness of the TB, $\eta$, for identifying the strong and weak interactions, and a parametric plot of the interactions in terms of $Fr$ and $\eta$.
We report an experimental study of the formation and evolution of laminar thermal structures generated by a small heat source, with a focus on their correlation to the thermal boundary layer and effects of heating time $t_{heat}$. The experiments are performed over the flux Rayleigh number ($Ra_f$) range $2.1\times 10^6 \leq Ra_f \leq 3.6\times 10^{7}$ and the Prandtl number ($Pr$) range $28.6 \leq Pr \leq 904.7$. The corresponding Rayleigh number ($Ra= t_{heat}\,Ra_{f}/\tau _0\,Pr$) range is $900 \leq Ra \leq 4\times 10^{4}$, where $\tau _0$ is a diffusion time scale. For thermal structures generated by continuous heating (i.e. starting plumes), their formation process exists three characteristic times that are well reflected by changes in the thermal boundary layer thickness. These characteristic times, denoted as $t_{emit}$, $t_{recover}$ and $t_{static}$, correspond to the moments when the plume emission begins and completes, and when the thermal boundary layer becomes quasi-static, respectively. Their $Ra_f$–$Pr$ dependencies are found to be $t_{emit}/\tau _0\sim Ra_f^{-0.41}\,Pr^{0.41}$, $t_{recover}/\tau _0\sim Ra_f^{-0.48}\,Pr^{0.48}$ and $t_{static}/\tau _0\sim Ra_f^{-0.49}\,Pr^{0.33}$, respectively. Thermal structures generated by finite $t_{heat}$ exhibit similar evolution dynamics once $t_{heat} \ge t_{emit}$, with the accelerating stage behaving like starting plumes and the decay stage like thermals (i.e. a finite amount of buoyant fluids). It is further found that their maximum rising velocity experiences a transition in the $Ra$-dependence from $Ra$ to $(Ra\ln Ra)^{0.5}$ at $Ra \simeq 6000$; and their maximum acceleration reaches the value of starting plumes at $t_{heat}\simeq t_{recover}$, and remains unchanged for larger $t_{heat}$. In particular, the maximum rising velocity for the cases with $t_{heat} = t_{recover}$ follows a scaling relation $Ra_f^{0.37}\,Pr^{-0.37}$, in contrast to the relation $Ra_f^{0.48}\,Pr^{-0.48}$ for starting plumes. This study provides a more comprehensive understanding of laminar thermal structures, which are relevant to a range of processes in nature and laboratory systems such as Rayleigh–Bénard convection.
Functional montmorillonite can be dispersed in polymer coatings and organic species and polymers can be intercalated into the interlayer space or grafted onto the surface of the functional montmorillonite. The addition of functional montmorillonite into polymer-based coatings can significantly improve anti-corrosion, refractory, super-hydrophobicity, antibacterial activity, and absorption of solar radiation by the resulting montmorillonite/polymer coatings. Montmorillonite can be functionalized for this purpose by ion exchange, intercalation, exfoliation, or combinations of these treatments. The rigid montmorillonite layers interspersed within the polymer matrix inhibit the penetration of corrosive substances, minimize the impact of high-temperature airflow, and thereby lead to strong resistance of the coating to corrosion and fire. The combination of polymers and dispersed montmorillonite nanolayers, which are modified by metal ions, metal oxides, and hydrophobic organic species, allows the resulting composite coating to have quite a rough surface and a much smaller surface free energy so that the montmorillonite/polymer coating possesses superhydrophobicity. The interlayer space of functional montmorillonite can also host or encapsulate antibacterial substances, phase-change materials, and solar energy-absorbing materials. Moreover, it can act as a template to make these guest species exist in a more stable and ordered state. Literature surveys suggest that future work on the functional montmorillonite/polymer coatings should be targeted at the manufacture of functional montmorillonite nanolayers by finding more suitable modifiers and tuning the dispersion and funtionalities of montmorillonite in the coatings.
Supercritical carbon dioxide (scCO2) processing has been proven as a method for preparing polymer/montmorillonite (MMT) nanocomposites with improved platelet dispersion. The influence of scCO2 processing on the shape and size of the MMT tactoid/platelet, which is of great importance to the final platelet dispersion in the polymer matrix, is scarcely reported in the literature. In the present study, the pristine MMT was first surface modified with 3-glycidoxypropyltrimethoxysilane (the grafted MMT is labeled as GMMT), and then intercalated using three kinds of intercalating agents, myristyltrimethyl-ammonium bromide (MTAB), tetradecyltrihexylphosphonium chloride (TDTHP), and ethoxyltriphenyl-phosphonium chloride (ETPC), in water or scCO2, to study the effect of intercalating agent type and intercalation method on the morphology and thermal properties of GMMT, as a part of a program devoted to the synthesis of polymer/MMT nanocomposites. The structure of intercalated GMMT was characterized by thermogravimetric analysis, X-ray powder diffraction, and scanning electron microscopy (SEM). The optimum intercalation conditions in scCO2 were established by trying a range of reaction times and pressures. The structures of intercalated GMMT obtained under optimum scCO2 conditions and water were compared. The basal spacing of GMMT intercalated in scCO2 was almost the same as that in water, and both were obviously larger than that of GMMT. The GMMT exhibited a compact spherical morphology (examined using SEM), and the surface structures (including surface morphology, surface roughness, and surface compactness) of samples intercalated in water became ‘less compact’ and the degree of the ‘compactness’ of samples intercalated in scCO2 decreased further. Whether in water or scCO2, samples intercalated with TDTHP exhibited a larger basal spacing and the extent of disorder increased compared to that for samples intercalated with MTAB. The pristine MMT was also intercalated for comparison and silane grafting was proven to contribute to the increased basal spacing and ‘less compact’ surface structure.
Dietary antioxidant indices (DAI) may be potentially associated with relative telomere length (RTL) of leucocytes. This study aimed to investigate the relationship between DAI and RTL. A cross-sectional study involving 1656 participants was conducted. A generalised linear regression model and a restricted cubic spline model were used to assess the correlation of DAI and its components with RTL. Generalised linear regression analysis revealed that DAI (β = 0·005, P = 0·002) and the intake of its constituents vitamin C (β = 0·043, P = 0·027), vitamin E (β = 0·088, P < 0·001), Se (β = 0·075, P = 0·003), and Zn (β = 0·075, P = 0·023) were significantly and positively correlated with RTL. Sex-stratified analysis showed that DAI (β = 0·006, P = 0·005) and its constituents vitamin E (β = 0·083, P = 0·012), Se (β = 0·093, P = 0·006), and Zn (β = 0·092, P = 0·034) were significantly and positively correlated with RTL among females. Meanwhile, among males, only vitamin E intake (β = 0·089, P = 0·013) was significantly and positively associated with RTL. Restricted cubic spline analysis revealed linear positive associations between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in the total population. Sex-stratified analysis revealed a linear positive correlation between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in females. Our study found a significant positive correlation between DAI and RTL, with sex differences.
Parenting is a common and potent environmental factor influencing adolescent anxiety. Yet, the underlying neurobiological susceptibility signatures remain elusive. Here, we used a longitudinal twin neuroimaging study to investigate the brain network integration and its heritable relation to underpin the neural differential susceptibility of adolescent anxiety to parenting environments.
Methods
216 twins from the Beijing Twin Study completed the parenting and anxiety assessments and fMRI scanning. We first identified the brain network integration involved in the influences of parenting at age 12 on anxiety symptoms at age 15. We then estimated to what extent heritable sensitive factors are responsible for the susceptibility of brain network integration.
Results
Consistent with the differential susceptibility theory, the results showed that hypo-connectivity within the central executive network amplified the impact of maternal hostility on anxiety symptoms. A high anti-correlation between the anterior salience and default mode networks played a similar modulatory role in the susceptibility of adolescent anxiety to paternal hostility. Genetic influences (21.18%) were observed for the connectivity pattern in the central executive network.
Conclusions
Brain network integration served as a promising neurobiological signature of the differential susceptibility to adolescent anxiety. Our findings deepen the understanding of the neural sensitivity in the developing brain and can inform early identification and personalized interventions for adolescents at risk of anxiety disorders.
Schizophrenia is a complex and heterogeneous syndrome with high clinical and biological stratification. Identifying distinctive subtypes can improve diagnostic accuracy and help precise therapy. A key challenge for schizophrenia subtyping is understanding the subtype-specific biological underpinnings of clinical heterogeneity. This study aimed to investigate if the machine learning (ML)-based neuroanatomical and symptomatic subtypes of schizophrenia are associated.
Methods
A total of 314 schizophrenia patients and 257 healthy controls from four sites were recruited. Gray matter volume (GMV) and Positive and Negative Syndrome Scale (PANSS) scores were employed to recognize schizophrenia neuroanatomical and symptomatic subtypes using K-means and hierarchical methods, respectively.
Results
Patients with ML-based neuroanatomical subtype-1 had focally increased GMV, and subtype-2 had widespread reduced GMV than the healthy controls based on either K-means or Hierarchical methods. In contrast, patients with symptomatic subtype-1 had severe PANSS scores than subtype-2. No differences in PANSS scores were shown between the two neuroanatomical subtypes; similarly, no GMV differences were found between the two symptomatic subtypes. Cohen’s Kappa test further demonstrated an apparent dissociation between the ML-based neuroanatomical and symptomatic subtypes (P > 0.05). The dissociation patterns were validated in four independent sites with diverse disease progressions (chronic vs. first episodes) and ancestors (Chinese vs. Western).
Conclusions
These findings revealed a replicable dissociation between ML-based neuroanatomical and symptomatic subtypes of schizophrenia, which provides a new viewpoint toward understanding the heterogeneity of schizophrenia.
Adsorption of nanoparticles on minerals affects the fate and transport of nanoparticles directly and is of great significance to many fields, including research into ore deposits, geochemistry, the environment and mineral materials. Whereas many previous studies have been conducted under the equilibrium pH and low solid (mineral) to liquid (nanoparticle suspension) ratio conditions, adsorption processes under initial pH and high solid/liquid ratio conditions may represent many important yet underexamined complex scenarios. To fill in this research gap, the adsorption of gold nanoparticles on illite was investigated experimentally at a relatively high solid/liquid ratio of 5 g L–1 and the effects of initial pH, ionic strength, citrate concentration, temperature and illite particle size were evaluated. The adsorbed amount of gold nanoparticles (from <5% to nearly 100%) increased with increasing ionic strength, temperature and citrate concentration and decreased with increasing pH and illite particle size. The presence of illite resulted in the dynamic evolution of the pH of the suspension, which, along with solution chemistry parameters, controlled the electrostatic interaction of illite and gold nanoparticles. The adsorption results, scanning electron microscopy observations and surface properties of illite suggest that the negatively charged gold nanoparticles were adsorbed predominantly on the positive illite edges through electrostatic interaction. The electrostatic attraction between illite and gold nanoparticles appeared to be strong, supported by the minor amount of desorption. These research findings are expected to provide a valuable reference regarding many critical issues in the geosciences as well as for industrial applications.
Chapter 5 puts the reconfiguration of Pacific Asia into global perspective in four respects. First, in contrast to the divergences that characterized the modern era, in this century there has been a multi-dimensional convergence between developed and developing countries. 2008 marked the first time since the nineteenth century that the production of the developing world was greater than that of the developed world. Second, the unipolar world order of the post-Cold War has shifted to a multinodal world order. Without a defining global power, the multinodal order has a “certainty vacuum” rather than a power vacuum, and it is best filled by partnerships rather than by alliances. Third, Pacific Asia has become a global powerhouse. In 2020 its GDP equaled that of the US and the EU combined, and it is integrated by global value chains. Fourth, China reaches beyond its region. Despite the headwinds of Covid-19, trade bottlenecks, and global tensions, China and Pacific Asia have arrived. If a bipolar configuration develops, it is likely to differ from the Cold War camps by being closer to a developed/developing country split, with less unity of leadership on either side.
Given China’s position in Pacific Asia, defining its regional centrality might seem a simple task. But centralities grander than merely geographical have been alleged and contested. Currently some maintain that China is the central kingdom because of its power. But it was conquered by the Mongols and the Manchus, and its present centrality is due more to its economic mass and connectivity than to its military. Others claim that hierarchy is natural to Asian culture, and China is the apex. But neighbors were often cynical about China’s moral stature, and China’s soft power is now at a low ebb. I argue that China was the center of regional attention in the premodern era, and that it has returned to center stage since 2008. The three basic reasons for China’s original centrality and its return were situational: presence, population, and production. The salience of all three disappeared with Western imperialism’s global presence, the devaluation of mere demography, and industrial production. Traditional and current centrality created asymmetric relationships between China and its neighbors, but the regional situations differ fundamentally.