We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
With wide-field phased array feed technology, the Australian Square Kilometre Array Pathfinder (ASKAP) is ideally suited to search for seemingly rare radio transient sources that are difficult to discover previous-generation narrow-field telescopes. The Commensal Real-time ASKAP Fast Transient (CRAFT) Survey Science Project has developed instrumentation to continuously search for fast radio transients (duration $\lesssim$ 1 s) with ASKAP, with a particular focus on finding and localising fast radio bursts (FRBs). Since 2018, the CRAFT survey has been searching for FRBs and other fast transients by incoherently adding the intensities received by individual ASKAP antennas, and then correcting for the impact of frequency dispersion on these short-duration signals in the resultant incoherent sum (ICS) in real time. This low-latency detection enables the triggering of voltage buffers, which facilitates the localisation of the transient source and the study of spectro-polarimetric properties at high time resolution. Here we report the sample of 43 FRBs discovered in this CRAFT/ICS survey to date. This includes 22 FRBs that had not previously been reported: 16 FRBs localised by ASKAP to $\lesssim 1$ arcsec and 6 FRBs localised to $\sim 10$ arcmin. Of the new arcsecond-localised FRBs, we have identified and characterised host galaxies (and measured redshifts) for 11. The median of all 30 measured host redshifts from the survey to date is $z=0.23$. We summarise results from the searches, in particular those contributing to our understanding of the burst progenitors and emission mechanisms, and on the use of bursts as probes of intervening media. We conclude by foreshadowing future FRB surveys with ASKAP using a coherent detection system that is currently being commissioned. This will increase the burst detection rate by a factor of approximately ten and also the distance to which ASKAP can localise FRBs.
Two studies were conducted in 2022 and 2023 near Rocky Mount and Clayton, NC, to determine the optimal granular ammonium sulfate (AMS) rate and application timing for pyroxasulfone-coated AMS. In the rate study, AMS rates included 161, 214, 267, 321, 374, 428, and 481 kg ha−1, equivalent to 34, 45, 56, 67, 79, 90, and 101 kg N ha−1, respectively. All rates were coated with pyroxasulfone at 118 g ai ha−1 and topdressed onto 5- to 7-leaf cotton. In the timing study, pyroxasulfone (118 g ai ha−1) was coated on AMS and topdressed at 321 kg ha−1 (67 kg N ha−1) onto 5- to 7-leaf, 9- to 11-leaf, and first bloom cotton. In both studies, weed control and cotton tolerance to pyroxasulfone-coated AMS were compared to pyroxasulfone applied POST and POST-directed. The check in both studies received non-herbicide-treated AMS (321 kg ha−1). Before treatment applications, all plots (including the check) were maintained weed-free with glyphosate and glufosinate. In both studies, pyroxasulfone applied POST was most injurious (8% to 16%), while pyroxasulfone-coated AMS resulted in ≤4% injury. Additionally, no differences in cotton lint yield were observed in either study. With the exception of the lowest rate of AMS (161 kg ha−1; 79%), all AMS rates coated with pyroxasulfone controlled Palmer amaranth ≥83%, comparably to pyroxasulfone applied POST (92%) and POST-directed (89%). In the timing study, the application method did not affect Palmer amaranth control; however, applications made at the mid- and late timings outperformed early applications. These results indicate that pyroxasulfone-coated AMS can control Palmer amaranth comparably to pyroxasulfone applied POST and POST-directed, with minimal risk of cotton injury. However, the application timing could warrant additional treatment to achieve adequate late-season weed control.
An experiment was conducted in 2022 and 2023 near Rocky Mount and Clayton, NC, to evaluate residual herbicide-coated fertilizer for cotton tolerance and Palmer amaranth control. Treatments included acetochlor, atrazine, dimethenamid-P, diuron, flumioxazin, fluometuron, fluridone, fomesafen, linuron, metribuzin, pendimethalin, pyroxasulfone, pyroxasulfone + carfentrazone, S-metolachlor, and sulfentrazone. Each herbicide was individually coated on granular ammonium sulfate (AMS) and top-dressed at 321 kg ha−1 (67 kg N ha−1) onto 5- to 7-leaf cotton. The check plots received the equivalent rate of nonherbicide-treated AMS. Before top-dress, all plots (including the check) were treated with glyphosate and glufosinate to control previously emerged weeds. All herbicides except metribuzin resulted in transient cotton injury. Cotton response to metribuzin varied by year and location. In 2022, metribuzin caused 11% to 39% and 8% to 17% injury at the Clayton and Rocky Mount locations, respectively. In 2023, metribuzin caused 13% to 32% injury at Clayton and 73% to 84% injury at Rocky Mount. Pyroxasulfone (91%), pyroxasulfone + carfentrazone (89%), fomesafen (87%), fluridone (86%), flumioxazin (86%), and atrazine (85%) controlled Palmer amaranth ≥85%. Pendimethalin and fluometuron were the least effective treatments, resulting in 58% and 62% control, respectively. As anticipated, early season metribuzin injury translated into yield loss; plots treated with metribuzin yielded 640 kg ha−1 and were comparable to yields after linuron (790 kg ha−1) was used. These findings suggest that with the exception of metribuzin, residual herbicides coated onto AMS may be suitable and effective in cotton production, providing growers with additional modes of action for late-season control of multiple herbicide–resistant Palmer amaranth.
This editorial considers the value and nature of academic psychiatry by asking what defines the specialty and psychiatrists as academics. We frame academic psychiatry as a way of thinking that benefits clinical services and discuss how to inspire the next generation of academics.
Advanced biopreservation technologies using subzero approaches such as supercooling, partial freezing, and vitrification with reanimating techniques including nanoparticle infusion and laser rewarming are rapidly emerging as technologies with potential to radically disrupt biomedicine, research, aquaculture, and conservation. These technologies could pause biological time and facilitate large-scale banking of biomedical products including organs, tissues, and cell therapies.
Develop and implement a system in the Veterans Health Administration (VA) to alert local medical center personnel in real time when an acute- or long-term care patient/resident is admitted to their facility with a history of colonization or infection with a multidrug-resistant organism (MDRO) previously identified at any VA facility across the nation.
Methods:
An algorithm was developed to extract clinical microbiology and local facility census data from the VA Corporate Data Warehouse initially targeting carbapenem-resistant Enterobacterales (CRE) and methicillin-resistant Staphylococcus aureus (MRSA). The algorithm was validated with chart review of CRE cases from 2010-2018, trialed and refined in 24 VA healthcare systems over two years, expanded to other MDROs and implemented nationwide on 4/2022 as “VA Bug Alert” (VABA). Use through 8/2023 was assessed.
Results:
VABA performed well for CRE with recall of 96.3%, precision of 99.8%, and F1 score of 98.0%. At the 24 trial sites, feedback was recorded for 1,011 admissions with a history of CRE (130), MRSA (814), or both (67). Among Infection Preventionists and MDRO Prevention Coordinators, 338 (33%) reported being previously unaware of the information, and of these, 271 (80%) reported they would not have otherwise known this information. By fourteen months after nationwide implementation, 113/130 (87%) VA healthcare systems had at least one VABA subscriber.
Conclusions:
A national system for alerting facilities in real-time of patients admitted with an MDRO history was successfully developed and implemented in VA. Next steps include understanding facilitators and barriers to use and coordination with non-VA facilities nationwide.
Understanding characteristics of healthcare personnel (HCP) with SARS-CoV-2 infection supports the development and prioritization of interventions to protect this important workforce. We report detailed characteristics of HCP who tested positive for SARS-CoV-2 from April 20, 2020 through December 31, 2021.
Methods:
CDC collaborated with Emerging Infections Program sites in 10 states to interview HCP with SARS-CoV-2 infection (case-HCP) about their demographics, underlying medical conditions, healthcare roles, exposures, personal protective equipment (PPE) use, and COVID-19 vaccination status. We grouped case-HCP by healthcare role. To describe residential social vulnerability, we merged geocoded HCP residential addresses with CDC/ATSDR Social Vulnerability Index (SVI) values at the census tract level. We defined highest and lowest SVI quartiles as high and low social vulnerability, respectively.
Results:
Our analysis included 7,531 case-HCP. Most case-HCP with roles as certified nursing assistant (CNA) (444, 61.3%), medical assistant (252, 65.3%), or home healthcare worker (HHW) (225, 59.5%) reported their race and ethnicity as either non-Hispanic Black or Hispanic. More than one third of HHWs (166, 45.2%), CNAs (283, 41.7%), and medical assistants (138, 37.9%) reported a residential address in the high social vulnerability category. The proportion of case-HCP who reported using recommended PPE at all times when caring for patients with COVID-19 was lowest among HHWs compared with other roles.
Conclusions:
To mitigate SARS-CoV-2 infection risk in healthcare settings, infection prevention, and control interventions should be specific to HCP roles and educational backgrounds. Additional interventions are needed to address high social vulnerability among HHWs, CNAs, and medical assistants.
Protein-rich animal foods are highly digestible, high-quality sources or protein, whereas the protein quality of plant-based foods can vary considerably. Given the growing interest in alternative non-animal-based sources of protein, it is important to establish the protein digestibility of these new foods and protein concentrates which have important health implications especially for vulnerable groups who don’t consume sufficient dietary protein. The human ileostomy model is ideal for measuring protein digestibility as it enables protein digestion to be quantified independent of protein degradation in the large intestine. The aim of this study was to determine the protein digestibility and quality of a wheat-based food containing legume flours. This randomised, double-blinded, controlled cross-over intervention was conducted in 4 proctocolectomised adults with conventional and well-functioning permanent ileostomies. The study was conducted over 2 weeks and on each testing day, the participant consumed 2 test muffins (125 g each) or 2 protein-free cookies in the morning (breakfast and morning tea) followed by a standardised low-protein lunch and afternoon tea. Test muffins were made using a standard muffin recipe using wheat flour and for 2 of the test muffins 50% of the flour was substituted with soy or lupin flour. An indigestible marker, titanium dioxide was added to the muffins so that the completeness of muffin recovered in ileal digesta could be calculated. The digestible indispensable amino acid score (DIAAS) was determined by comparing concentrations of true ileal digestible indispensable amino acids to recommended amino acid requirements(1). Data was reported as mean ± SD and repeated measures ANOVA was used to compare means between treatment groups with significance reported at P < 0.05. Substituting 50% of wheat flour in muffins with soy or lupin flour doubled the protein content of muffins (soy 11.8 g/100g and lupin 10.6 g/100g) compared to muffins that only contained wheat flour (wheat 5.1 g/100g). However, substituting wheat with legume flour did not affect protein digestibility which was similar for all muffin types; wheat (76.8 ± 7.0%), soy (77.9 ± 7.4%) and lupin (81.6 ± 6.9%) (P = 0.181). The DIAAS values for all muffins were below 75% which is classified as the cut off for a good quality protein food. In conclusion, substitution of wheat-based muffins with soy and lupin flour increased the protein content of wheat-based muffins but protein digestibility and overall protein quality was similar.
The prioritization of English language in clinical research is a barrier to translational science. We explored promising practices to advance the inclusion of people who speak languages other than English in research conducted within and supported by NIH Clinical Translational Science Award (CTSA) hubs. Key informant interviews were conducted with representatives (n = 24) from CTSA hubs (n = 17). Purposive sampling was used to identify CTSA hubs focused on language inclusion. Hubs electing to participate were interviewed via Zoom. Thematic analysis was performed to analyze interview transcripts. We report on strategies employed by hubs to advance linguistic inclusion and influence institutional change that were identified. Strategies ranged from translations, development of culturally relevant materials and consultations to policies and procedural changes and workforce initiatives. An existing framework was adapted to conceptualize hub strategies. Language justice is paramount to bringing more effective treatments to all people more quickly. Inclusion will require institutional transformation and CTSA hubs are well positioned to catalyze change.
Sediments from depths to 670 m in the Barbados accretionary complex and transecting the décollement zone have been studied by transmission and analytical electron microscopy (TEM/AEM). The sediments consist of claystone and mudstone intercalated with layers of volcanic ash. Smectite comprises the bulk of the noncalcareous sediments and forms a continuous matrix enveloping sparse, irregular, large grains of illite, chlorite, kaolinite and mixed-layer illite/chlorite of detrital origin at all depths. The detrital origin of illite is implied by illite-smectite textural relations, well-ordered 2M polytypism, and a muscovite-like composition. K is the dominant interlayer cation in smectite at all depths, in contrast to the Na and Ca that are normally present in similar rocks.
Deeper samples associated with the décollement zone contain small (up to 100 Å thick) illite packets included within still-dominant subparallel layers of contiguous smectite. AEM analyses of these packets imply illite-like compositions. Selected area electron diffraction (SAED) patterns show that this illite is the 1Md polytype. Packets display step-like terminations like those seen in illite of hydrothermal origin. The data collectively demonstrate that smectite transforms progressively to illite via a dissolution-recrystallization process within a depleting matrix of smectite, and not by a mechanism of layer replacement. This illite seems to form at depths as shallow as 500 m and temperatures of 20°-30°C, which is in marked contrast to the much higher temperature conditions normally assumed for this transformation. This implies that the high water/rock ratios associated with the décollement zone are significant in promoting reaction.
The adsorption mechanisms of divalent cations in zeolite nanopore channels can vary as a function of their pore dimensions. The nanopore inner-sphere enhancement (NISE) theory predicts that ions may dehydrate inside small nanopore channels in order to adsorb more closely to the mineral surface if the nanopore channel is sufficiently small. The results of an electron paramagnetic resonance (EPR) spectroscopy study of Mn and Cu adsorption on the zeolite minerals zeolite Y (large nanopores), ZSM-5 (intermediate nanopores), and mordenite (small nanopores) are presented. The Cu and Mn cations both adsorbed via an outer-sphere mechanism on zeolite Y based on the similarity between the adsorbed spectra and the aqueous spectra. Conversely, Mn and Cu adsorbed via an inner-sphere mechanism on mordenite based on spectrum asymmetry and peak broadening of the adsorbed spectra. However, Mn adsorbed via an outer-sphere mechanism on ZSM-5, whereas Cu adsorbed on ZSM-5 shows a high degree of surface interaction that indicates that it is adsorbed closer to the mineral surface. Evidence of dehydration and immobility was more readily evident in the spectrum of mordenite than in that of ZSM-5, indicating that Cu was not as close to the surface on ZSM-5 as it was when adsorbed on mordenite. Divalent Mn cations are strongly hydrated and are held strongly only in zeolites with small nanopore channels. Divalent Cu cations are also strongly hydrated, but can dehydrate more easily, presumably due to the Jahn-Teller effect, and are held strongly in zeolites with medium-sized nanopore channels or smaller.
The COVID-19 pandemic laid bare systemic inequities shaped by social determinants of health (SDoH). Public health agencies, legislators, health systems, and community organizations took notice, and there is currently unprecedented interest in identifying and implementing programs to address SDoH. This special issue focuses on the role of medical-legal partnerships (MLPs) in addressing SDoH and racial and social inequities, as well as the need to support these efforts with evidence-based research, data, and meaningful partnerships and funding.
Monoclonal antibody (mAb) treatment for coronavirus disease 2019 (COVID-19) has been underutilized due to logistical challenges, lack of access, and variable treatment awareness among patients and health-care professionals. The use of telehealth during the pandemic provides an opportunity to increase access to COVID-19 care.
Methods:
This is a single-center descriptive study of telehealth-based patient self-referral for mAb therapy between March 1, 2021, and October 31, 2021, at Baltimore Convention Center Field Hospital (BCCFH).
Results:
Among the 1001 self-referral patients, the mean age was 47, and most were female (57%). White (66%), and had a primary care provider (PCP) (62%). During the study period, self-referrals increased from 14/mo in March to 427 in October resulting in a 30-fold increase. Approximately 57% of self-referred patients received a telehealth visit, and of those 82% of patients received mAb infusion therapy. The median time from self-referral to onsite infusion was 2 d (1-3 IQR).
Discussion:
Our study shows the integration of telehealth with a self-referral process improved access to mAb infusion. A high proportion of self-referrals were appropriate and led to timely treatment. This approach helped those without traditional avenues for care and avoided potential delay for patients seeking referral from their PCPs.
Annual bluegrass is a troublesome weed in turfgrass, with reported resistance to at least 12 herbicide sites of action. The mitotic-inhibiting herbicide pronamide has both preemergence and postemergence activity on susceptible annual bluegrass populations. Previous studies suggest that postemergence activity may be compromised due to lack of root uptake, as well as target-site- and translocation-based mechanisms. Research was conducted to determine the effects of spray droplet spectra on spray coverage and control of annual bluegrass with pronamide, flazasulfuron, and a mixture of pronamide plus flazasulfuron. Herbicides were delivered to annual bluegrass plants having two to three leaves via five different spray spectra based on volume median diameters (VMD) of 200, 400, 600, 800, and 1,000 µm. Fluorescent tracer dye was added to each treatment solution to quantify the effects of herbicide and spray droplet spectra on herbicide deposition. In another experiment, the efficacy of 0.58, 1.16, and 2.32 kg pronamide ha−1; 0.022, 0.044, and 0.088 kg flazasulfuron ha−1, or a combination of the two, were assessed in iteration with droplet spectrum sprays of 400 and 1,000 µm on two pronamide-resistant and two pronamide-susceptible annual bluegrass populations. Spray droplet spectrum affected the deposition of pronamide and flazasulfuron, applied alone and in combination. Pronamide foliar deposition decreased with increasing droplet spectra. Pronamide efficacy was affected by droplet spectrum, with the largest (1,000 µm) exhibiting improved control. Flazasulfuron efficacy and pronamide plus flazasulfuron efficacy were not affected by droplet spectra. Pronamide plus flazasulfuron mixture controlled all four populations more effectively than pronamide alone, regardless of droplet spectra. A mixture of pronamide plus flazasulfuron applied with relatively large droplets may be optimal for annual bluegrass control, which offers valuable insights for optimizing herbicide application and combatting herbicide resistance. However, applications in this controlled-growth pot study may not mimic conditions in which thatch and turfgrass canopy limit the soil deposition of pronamide.
The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery (WCPCCS) will be held in Washington DC, USA, from Saturday, 26 August, 2023 to Friday, 1 September, 2023, inclusive. The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery will be the largest and most comprehensive scientific meeting dedicated to paediatric and congenital cardiac care ever held. At the time of the writing of this manuscript, The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery has 5,037 registered attendees (and rising) from 117 countries, a truly diverse and international faculty of over 925 individuals from 89 countries, over 2,000 individual abstracts and poster presenters from 101 countries, and a Best Abstract Competition featuring 153 oral abstracts from 34 countries. For information about the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery, please visit the following website: [www.WCPCCS2023.org]. The purpose of this manuscript is to review the activities related to global health and advocacy that will occur at the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery.
Acknowledging the need for urgent change, we wanted to take the opportunity to bring a common voice to the global community and issue the Washington DC WCPCCS Call to Action on Addressing the Global Burden of Pediatric and Congenital Heart Diseases. A copy of this Washington DC WCPCCS Call to Action is provided in the Appendix of this manuscript. This Washington DC WCPCCS Call to Action is an initiative aimed at increasing awareness of the global burden, promoting the development of sustainable care systems, and improving access to high quality and equitable healthcare for children with heart disease as well as adults with congenital heart disease worldwide.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.