We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Introduction: Although use of point of care ultrasound (PoCUS) protocols for patients with undifferentiated hypotension in the Emergency Department (ED) is widespread, our previously reported SHoC-ED study showed no clear survival or length of stay benefit for patients assessed with PoCUS. In this analysis, we examine if the use of PoCUS changed fluid administration and rates of other emergency interventions between patients with different shock types. The primary comparison was between cardiogenic and non-cardiogenic shock types. Methods: A post-hoc analysis was completed on the database from an RCT of 273 patients who presented to the ED with undifferentiated hypotension (SBP <100 or shock index > 1) and who had been randomized to receive standard care with or without PoCUS in 6 centres in Canada and South Africa. PoCUS-trained physicians performed scans after initial assessment. Shock categories and diagnoses recorded at 60 minutes after ED presentation, were used to allocate patients into subcategories of shock for analysis of treatment. We analyzed actual care delivered including initial IV fluid bolus volumes (mL), rates of inotrope use and major procedures. Standard statistical tests were employed. Sample size was powered at 0.80 (α:0.05) for a moderate difference. Results: Although there were expected differences in the mean fluid bolus volume between patients with non-cardiogenic and cardiogenic shock, there was no difference in fluid bolus volume between the control and PoCUS groups (non-cardiogenic control 1878 mL (95% CI 1550 – 2206 mL) vs. non-cardiogenic PoCUS 1687 mL (1458 – 1916 mL); and cardiogenic control 768 mL (194 – 1341 mL) vs. cardiogenic PoCUS 981 mL (341 – 1620 mL). Likewise there were no differences in rates of inotrope administration, or major procedures for any of the subcategories of shock between the control group and PoCUS group patients. The most common subcategory of shock was distributive. Conclusion: Despite differences in care delivered by subcategory of shock, we did not find any significant difference in actual care delivered between patients who were examined using PoCUS and those who were not. This may help to explain the previously reported lack of outcome difference between groups.
Introduction: Point of care ultrasound has been reported to improve diagnosis in non-traumatic hypotensive ED patients. We compared diagnostic performance of physicians with and without PoCUS in undifferentiated hypotensive patients as part of an international prospective randomized controlled study. The primary outcome was diagnostic performance of PoCUS for cardiogenic vs. non-cardiogenic shock. Methods: SHoC-ED recruited hypotensive patients (SBP < 100 mmHg or shock index > 1) in 6 centres in Canada and South Africa. We describe previously unreported secondary outcomes relating to diagnostic accuracy. Patients were randomized to standard clinical assessment (No PoCUS) or PoCUS groups. PoCUS-trained physicians performed scans after initial assessment. Demographics, clinical details and findings were collected prospectively. Initial and secondary diagnoses including shock category were recorded at 0 and 60 minutes. Final diagnosis was determined by independent blinded chart review. Standard statistical tests were employed. Sample size was powered at 0.80 (α:0.05) for a moderate difference. Results: 273 patients were enrolled with follow-up for primary outcome completed for 270. Baseline demographics and perceived category of shock were similar between groups. 11% of patients were determined to have cardiogenic shock. PoCUS had a sensitivity of 80.0% (95% CI 54.8 to 93.0%), specificity 95.5% (90.0 to 98.1%), LR+ve 17.9 (7.34 to 43.8), LR-ve 0.21 (0.08 to 0.58), Diagnostic OR 85.6 (18.2 to 403.6) and accuracy 93.7% (88.0 to 97.2%) for cardiogenic shock. Standard assessment without PoCUS had a sensitivity of 91.7% (64.6 to 98.5%), specificity 93.8% (87.8 to 97.0%), LR+ve 14.8 (7.1 to 30.9), LR- of 0.09 (0.01 to 0.58), Diagnostic OR 166.6 (18.7 to 1481) and accuracy of 93.6% (87.8 to 97.2%). There was no significant difference in sensitivity (-11.7% (-37.8 to 18.3%)) or specificity (1.73% (-4.67 to 8.29%)). Diagnostic performance was also similar between other shock subcategories. Conclusion: As reported in other studies, PoCUS based assessment performed well diagnostically in undifferentiated hypotensive patients, especially as a rule-in test. However performance was similar to standard (non-PoCUS) assessment, which was excellent in this study.
Towards a comprehensive revision of Gesneriaceae in Sri Lanka, 12 names are here typified, of which 11 are lectotypifications, including one second-step lectotypification, and the other is a neotypification.
A range of precision farming technologies are used commercially for variable rate applications of nitrogen (N) for cereals, yet these usually adjust N rates from a pre-set value, rather than predicting economically optimal N requirements on an absolute basis. This paper reports chessboard experiments set up to examine variation in N requirements, and to develop and test systems for its prediction, and to assess its predictability. Results showed very substantial variability in fertiliser N requirements within fields, typically >150 kg ha−1, and large variation in optimal yields, typically >2 t ha−1. Despite this, calculated increases in yield and gross margin with N requirements perfectly matched across fields were surprisingly modest (compared to the uniform average rate). Implications are discussed, including the causes of the large remaining variation in grain yield, after N limitations were removed.
Introduction: Point of care ultrasound (PoCUS) has become an established tool in the initial management of patients with undifferentiated hypotension in the emergency department (ED). Current established protocols (e.g. RUSH and ACES) were developed by expert user opinion, rather than objective, prospective data. Recently the SHoC Protocol was published, recommending 3 core scans; cardiac, lung, and IVC; plus other scans when indicated clinically. We report the abnormal ultrasound findings from our international multicenter randomized controlled trial, to assess if the recommended 3 core SHoC protocol scans were chosen appropriately for this population. Methods: Recruitment occurred at seven centres in North America (4) and South Africa (3). Screening at triage identified patients (SBP<100 or shock index>1) who were randomized to PoCUS or control (standard care with no PoCUS) groups. All scans were performed by PoCUS-trained physicians within one hour of arrival in the ED. Demographics, clinical details and study findings were collected prospectively. A threshold incidence for positive findings of 10% was established as significant for the purposes of assessing the appropriateness of the core recommendations. Results: 138 patients had a PoCUS screen completed. All patients had cardiac, lung, IVC, aorta, abdominal, and pelvic scans. Reported abnormal findings included hyperdynamic LV function (59; 43%); small collapsing IVC (46; 33%); pericardial effusion (24; 17%); pleural fluid (19; 14%); hypodynamic LV function (15; 11%); large poorly collapsing IVC (13; 9%); peritoneal fluid (13; 9%); and aortic aneurysm (5; 4%). Conclusion: The 3 core SHoC Protocol recommendations included appropriate scans to detect all pathologies recorded at a rate of greater than 10 percent. The 3 most frequent findings were cardiac and IVC abnormalities, followed by lung. It is noted that peritoneal fluid was seen at a rate of 9%. Aortic aneurysms were rare. This data from the first RCT to compare PoCUS to standard care for undifferentiated hypotensive ED patients, supports the use of the prioritized SHoC protocol, though a larger study is required to confirm these findings.
Introduction: Point of care ultrasound (PoCUS) is an established tool in the initial management of patients with undifferentiated hypotension in the emergency department (ED). While PoCUS protocols have been shown to improve early diagnostic accuracy, there is little published evidence for any mortality benefit. We report the findings from our international multicenter randomized controlled trial, assessing the impact of a PoCUS protocol on survival and key clinical outcomes. Methods: Recruitment occurred at 7 centres in North America (4) and South Africa (3). Scans were performed by PoCUS-trained physicians. Screening at triage identified patients (SBP<100 or shock index>1), randomized to PoCUS or control (standard care and no PoCUS) groups. Demographics, clinical details and study findings were collected prospectively. Initial and secondary diagnoses were recorded at 0 and 60 minutes, with ultrasound performed in the PoCUS group prior to secondary assessment. The primary outcome measure was 30-day/discharge mortality. Secondary outcome measures included diagnostic accuracy, changes in vital signs, acid-base status, and length of stay. Categorical data was analyzed using Fishers test, and continuous data by Student T test and multi-level log-regression testing. (GraphPad/SPSS) Final chart review was blinded to initial impressions and PoCUS findings. Results: 258 patients were enrolled with follow-up fully completed. Baseline comparisons confirmed effective randomization. There was no difference between groups for the primary outcome of mortality; PoCUS 32/129 (24.8%; 95% CI 14.3-35.3%) vs. Control 32/129 (24.8%; 95% CI 14.3-35.3%); RR 1.00 (95% CI 0.869 to 1.15; p=1.00). There were no differences in the secondary outcomes; ICU and total length of stay. Our sample size has a power of 0.80 (α:0.05) for a moderate effect size. Other secondary outcomes are reported separately. Conclusion: This is the first RCT to compare PoCUS to standard care for undifferentiated hypotensive ED patients. We did not find any mortality or length of stay benefits with the use of a PoCUS protocol, though a larger study is required to confirm these findings. While PoCUS may have diagnostic benefits, these may not translate into a survival benefit effect.
Introduction: Point of Care Ultrasound (PoCUS) protocols are commonly used to guide resuscitation for emergency department (ED) patients with undifferentiated non-traumatic hypotension. While PoCUS has been shown to improve early diagnosis, there is a minimal evidence for any outcome benefit. We completed an international multicenter randomized controlled trial (RCT) to assess the impact of a PoCUS protocol on key resuscitation markers in this group. We report diagnostic impact and mortality elsewhere. Methods: The SHoC-ED1 study compared the addition of PoCUS to standard care within the first hour in the treatment of adult patients presenting with undifferentiated hypotension (SBP<100 mmHg or a Shock Index >1.0) with a control group that did not receive PoCUS. Scans were performed by PoCUS-trained physicians. 4 North American, and 3 South African sites participated in the study. Resuscitation outcomes analyzed included volume of fluid administered in the ED, changes in shock index (SI), modified early warning score (MEWS), venous acid-base balance, and lactate, at one and four hours. Comparisons utilized a T-test as well as stratified binomial log-regression to assess for any significant improvement in resuscitation amount the outcomes. Our sample size was powered at 0.80 (α:0.05) for a moderate effect size. Results: 258 patients were enrolled with follow-up fully completed. Baseline comparisons confirmed effective randomization. There was no significant difference in mean total volume of fluid received between the control (1658 ml; 95%CI 1365-1950) and PoCUS groups (1609 ml; 1385-1832; p=0.79). Significant improvements were seen in SI, MEWS, lactate and bicarbonate with resuscitation in both the PoCUS and control groups, however there was no difference between groups. Conclusion: SHOC-ED1 is the first RCT to compare PoCUS to standard of care in hypotensive ED patients. No significant difference in fluid used, or markers of resuscitation was found when comparing the use of a PoCUS protocol to that of standard of care in the resuscitation of patients with undifferentiated hypotension.
Introduction: Point of care ultrasonography (PoCUS) is an established tool in the initial management of hypotensive patients in the emergency department (ED). It has been shown rule out certain shock etiologies, and improve diagnostic certainty, however evidence on benefit in the management of hypotensive patients is limited. We report the findings from our international multicenter RCT assessing the impact of a PoCUS protocol on diagnostic accuracy, as well as other key outcomes including mortality, which are reported elsewhere. Methods: Recruitment occurred at 4 North American and 3 Southern African sites. Screening at triage identified patients (SBP<100 mmHg or shock index >1) who were randomized to either PoCUS or control groups. Scans were performed by PoCUS-trained physicians. Demographics, clinical details and findings were collected prospectively. Initial and secondary diagnoses were recorded at 0 and 60 minutes, with ultrasound performed in the PoCUS group prior to secondary assessment. Final chart review was blinded to initial impressions and PoCUS findings. Categorical data was analyzed using Fishers two-tailed test. Our sample size was powered at 0.80 (α:0.05) for a moderate effect size. Results: 258 patients were enrolled with follow-up fully completed. Baseline comparisons confirmed effective randomization. The perceived shock category changed more frequently in the PoCUS group 20/127 (15.7%) vs. control 7/125 (5.6%); RR 2.81 (95% CI 1.23 to 6.42; p=0.0134). There was no significant difference in change of diagnostic impression between groups PoCUS 39/123 (31.7%) vs control 34/124 (27.4%); RR 1.16 (95% CI 0.786 to 1.70; p=0.4879). There was no significant difference in the rate of correct category of shock between PoCUS (118/127; 93%) and control (113/122; 93%); RR 1.00 (95% CI 0.936 to 1.08; p=1.00), or for correct diagnosis; PoCUS 90/127 (70%) vs control 86/122 (70%); RR 0.987 (95% CI 0.671 to 1.45; p=1.00). Conclusion: This is the first RCT to compare PoCUS to standard care for undifferentiated hypotensive ED patients. We found that the use of PoCUS did change physicians’ perceived shock category. PoCUS did not improve diagnostic accuracy for category of shock or diagnosis.
Introduction: Point of care ultrasound has become an established tool in the initial management of patients with undifferentiated hypotension. Current established protocols (RUSH, ACES, etc) were developed by expert user opinion, rather than objective, prospective data. We wished to use reported disease incidence to develop an informed approach to PoCUS in hypotension using a “4 F’s” approach: Fluid; Form; Function; Filling. Methods: We summarized the incidence of PoCUS findings from an international multicentre RCT, and using a modified Delphi approach incorporating this data we obtained the input of 24 international experts associated with five professional organizations led by the International Federation of Emergency Medicine. The modified Delphi tool was developed to reach an international consensus on how to integrate PoCUS for hypotensive emergency department patients. Results: Rates of abnormal PoCUS findings from 151 patients with undifferentiated hypotension included left ventricular dynamic changes (43%), IVC abnormalities (27%), pericardial effusion (16%), and pleural fluid (8%). Abdominal pathology was rare (fluid 5%, AAA 2%). After two rounds of the survey, using majority consensus, agreement was reached on a SHoC-hypotension protocol comprising: A. Core: 1. Cardiac views (Sub-xiphoid and parasternal windows for pericardial fluid, cardiac form and ventricular function); 2. Lung views for pleural fluid and B-lines for filling status; and 3. IVC views for filling status; B. Supplementary: Additional cardiac views; and C. Additional views (when indicated) including peritoneal fluid, aorta, pelvic for IUP, and proximal leg veins for DVT. Conclusion: An international consensus process based on prospectively collected disease incidence has led to a proposed SHoC-hypotension PoCUS protocol comprising a stepwise clinical-indication based approach of Core, Supplementary and Additional PoCUS views.
Introduction: Point of care ultrasound (PoCUS) provides invaluable information during resuscitation efforts in cardiac arrest by determining presence/absence of cardiac activity and identifying reversible causes such as pericardial tamponade. There is no agreed guideline on how to safely and effectively incorporate PoCUS into the advanced cardiac life support (ACLS) algorithm. We consider that a consensus-based priority checklist using a “4 F’s” approach (Fluid; Form; Function; Filling), would provide a better algorithm during ACLS. Methods: The ultrasound subcommittee of the Australasian College for Emergency Medicine (ACEM) drafted a checklist incorporating PoCUS into the ACLS algorithm. This was further developed using the input of 24 international experts associated with five professional organizations led by the International Federation of Emergency Medicine. A modified Delphi tool was developed to reach an international consensus on how to integrate ultrasound into cardiac arrest algorithms for emergency department patients. Results: Consensus was reached following 3 rounds. The agreed protocol focuses on the timing of PoCUS as well as the specific clinical questions. Core cardiac windows performed during the rhythm check pause in chest compressions are the sub-xiphoid and parasternal cardiac views. Either view should be used to detect pericardial fluid, as well as examining ventricular form (e.g. right heart strain) and function, (e.g. asystole versus organized cardiac activity). Supplementary views include lung views (for absent lung sliding in pneumothorax and for pleural fluid), and IVC views for filling. Additional ultrasound applications are for endotracheal tube confirmation, proximal leg veins for DVT, or for sources of blood loss (AAA, peritoneal/pelvic fluid). Conclusion: The authors hope that this process will lead to a consensus-based SHoC-cardiac arrest guideline on incorporating PoCUS into the ACLS algorithm.
Twelve supernova remnants in the Large Magellanic Cloud have now been observed with the Australia Telescope. These were all imaged in total intensity and where possible the linear polarisation was also mapped. In many respects this survey is similar to previous single-dish observations of Galactic supernova remnants, and comparisons are made with these results. Preliminary images are shown for several sources. The survey is continuing with additional array configurations and at other wavelengths.
The synthesis telescopes at Fleurs and Molonglo have been used to map 50 supernova remnants. Additional specialized software to process the maps has been developed, and Parkes observations have been used to supply short spacing information missing from the maps.
8.4 GHz linear polarization maps, obtained with the Parkes radio telescope, are presented for six southern supernova remnants. These results are compared with published and unpublished polarization maps at 5 GHz to derive the magnetic field direction and Faraday rotation measure distribution.
These results are part of a program to map the magnetic fields in galactic supernova remnants and complement our program to obtain high-resolution maps of galactic SNRs using the Molonglo Observatory Synthesis Telescope; five new Molonglo maps are presented here.
The Molonglo Observatory synthesis telescope (MOST) of the University of Sydney (Mills 1981) produces maps of the 843 MHz continuum emission from fields of width 23′, 46′ or 70′ arc. The telescope comprises two co-linear east-west cylindrical paraboloids each 2186λ in length and separated by a gap of 43λ. For each paraboloid a phasing network (Durdin et al. 1984) generates a comb of 64 contiguous fan beams. Mapping is accomplished in real time during a 12-h observation by overlaying, in the map plane, the instantaneous cross-correlations of corresponding beams. The synthesized point-source response (beam) produced by this method has a width of 43″ (E-W) by 43″ cosec δ (N-S).
Allelic polymorphism at the apolipoprotein E (apo E) gene locus (alleles ɛ2, ɛ3 and ɛ4) is responsible for the existence of 6 discrete electrophoretic phenotypes of plasma apo E. Since the presence of the ɛ2 allele in the genotype tends to be associated with higher triglyceride levels, a study was undertaken to determine if a higher frequency of this allele could account for the presence of higher plasma triglycerides in subsets of patients with Friedreich's Ataxia. The frequency of the apo E phenotypes was determined in 37 subjects with Friedreich's Ataxia and compared with that of 102 normolipidemic and 102 hyperlipidemic individuals. There was no increased prevalence of the E3/2 phenotype and the ɛ2 allele in the Friedreich's sample as is found in a hyperlipidemic sample. Furthermore, the ɛ2 subset did not have significantly higher plasma triglycerides than the non-ɛ2 subset and the hypothesis was rejected. On the other hand, there was a trend for a decreased frequency of the E4/3 phenotype in the Friedreich's sample relative to the hyperlipidemic group but the difference did not reach statistical significance. The apo E phenotype distribution was also measured in a smaller sample of Charlevoix-Saguenay disease; this led to the discovery of two siblings with the relatively rare E2/2 phenotype and unexpectedly low levels of plasma lipid and lipoprotein concentrations. Plasma apolipoprotein E concentrations in both diseases were within the normal range except for subjects bearing the E2/2 phenotype.