We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present observations of the Mopra carbon monoxide (CO) survey of the Southern Galactic Plane, covering Galactic longitudes spanning $l = 250^{\circ}$ ($-110^{\circ}$) to $l = 355^{\circ}$ ($-5^{\circ}$), with a latitudinal coverage of at least $|b|<1^\circ$, totalling an area of $>$210 deg$^{2}$. These data have been taken at 0.6 arcmin spatial resolution and 0.1 km s$^{-1}$ spectral resolution, providing an unprecedented view of the molecular gas clouds of the Southern Galactic Plane in the 109–115 GHz $J = 1-0$ transitions of $^{12}$CO, $^{13}$CO, C$^{18}$O, and C$^{17}$O.
We carried out large–scale (4 × 2 degree) CO multi–line observations toward the central molecular zone (CMZ) in the Galactic center (GC) with the NANTEN2 4m telescope and mapped several diffuse molecular features located at relatively high Galactic latitudes above 0°.6. These high–latitude features are composed of diffuse molecular halo gas and molecular filaments according to their morphological aspects. Their high velocities and high intensity ratios between 12CO J = (2−1) and J = (1−0) clearly indicate their location in the GC, and their total mass amount to ∼10% of that of the CMZ. We discuss that magnetic field is a possible mechanism of these high–latitude molecular features lifting up toward high galactic latitude.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.