We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.
Aims
To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.
Method
This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework.
Results
The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data.
Conclusions
Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.
Carbon-rich dust is known to form in the atmosphere of the semiregular variable star R Sculptoris. Such stardust, as well as the molecules and gas produced during the lifetime of the star, will be spread into the Galaxy via the mass-loss process. Probing this process is crucial to understand the chemical enrichment of the Galaxy. R Scl was observed using the ESO/VLTI MATISSE instrument in December 2018. Here we show the first images of the star between 3 and 10 R*. Using the complementary MIRA 3D image reconstruction and the RHAPSODY 1D intensity profile reconstruction code, we reveal the location of molecules and dust in the close environment of the star. Indeed, the C2H2 and HCN molecules are spatially located between 1 and 3.4 R* which is much closer to the star than the location of the dust. The R Scl spectrum is fitted by molecules and a dust mixture of 90% of amorphous carbon and 10% of silicone carbide. The inner boundary of the dust envelope is estimated by DUSTY at about 4.6 R*. We derive a mass-loss rate of 1.2 ± 0.4 × 10−6M⊙ yr−1however no clear SiC forming region has been detected in the MATISSE data.
The literature contains considerable disagreements on the relative stabilities of the members of the copper hydroxyl sulphate family. Titration of copper sulphate with sodium hydroxide is claimed by some to produce only brochantite, while other reports indicate that antlerite and a dihydrate of antlerite are produced in the titration. Most stability field diagrams show that antlerite is the more stable stoichiomer at pH 4 and sulphate activity of 0.05–1. We have reexamined this stoichiometric family by titration of aqueous copper sulphate with sodiumhydroxide and sodium carbonate, reverse titration of sodiumhydroxide with copper sulphate and simultaneous addition of copper sulphate and sodium hydroxide at a variety of mole ratios, concentrations, temperatures and reaction times. We have also explored the reaction of copper hydroxide with copper sulphate and the reaction of weak bases, such as sodiumacetate, sodiumcarbonate and urea, with copper sulphate. Our work indicates that: (1) antlerite is not formed in reactions of 0.05 to 1.2 M CuSO4 with 0.05–1.0 M NaOH or Na2CO3 at room temperature; (2) antlerite is formed in the addition of small concentrations of base (≤0.01 M) to 1 M CuSO4 at 80°C, but not at roomtem perature or with 0.01 M CuSO4 at 80°C; (3) the formation of Cu5(SO4)2(OH)6·4H2O occurs at large Cu2+ to base mole ratios; (4) the compound described in the literature as antlerite dihydrate is actually Cu5(SO4)2(OH)6.4H2O; (5) at mole ratios of Cu2+ to OH– ranging from 2:1 to 1:2 the predominant product is brochantite; and (6) brochantite and Cu5(SO4)2(OH)6.4H2O are converted to antlerite in the presence of 1 M CuSO4 (the latter requires temperatures of 80°C or greater).
The Ksp (ion activity product) values of antlerite and brochantite were determined to be 2.53 (0.01)⨯10−48 and 1.01 (0.01)⨯10−69, respectively, using atomic absorption spectroscopy and Visual MINTEQ after equilibration in solutions of varying ionic strength and pH for six days. These values are in good agreement with those from the literature. However, after 6 months, antlerite in contact with solution is partially converted to brochantite and hence is metastable with a relatively low conversion rate. The Ksp value for antlerite must therefore be considered approximate. The relative stabilities of the copper hydroxyl sulphates are rationalized using appropriate equations and Gibbs energy calculations. A Gibbs free energy of formation for Cu5(SO4)2(OH)6.4H2O of –3442 kJ/mol was obtained from the simple salt approximation.
Elemental, chemical, and structural analysis of polycrystalline materials at the micron scale is frequently carried out using microfocused synchrotron X-ray beams, sometimes on multiple instruments. The Maia pixelated energy-dispersive X-ray area detector enables the simultaneous collection of X-ray fluorescence (XRF) and diffraction because of the relatively large solid angle and number of pixels when compared with other systems. The large solid angle also permits extraction of surface topography because of changes in self-absorption. This work demonstrates the capability of the Maia detector for simultaneous measurement of XRF and diffraction for mapping the short- and long-range order across the grain structure in a Ni polycrystalline foil.
The influence of baseline severity has been examined for antidepressant
medications but has not been studied properly for cognitive–behavioural
therapy (CBT) in comparison with pill placebo.
Aims
To synthesise evidence regarding the influence of initial severity on
efficacy of CBT from all randomised controlled trials (RCTs) in which
CBT, in face-to-face individual or group format, was compared with
pill-placebo control in adults with major depression.
Method
A systematic review and an individual-participant data meta-analysis
using mixed models that included trial effects as random effects. We used
multiple imputation to handle missing data.
Results
We identified five RCTs, and we were given access to individual-level
data (n = 509) for all five. The analyses revealed that
the difference in changes in Hamilton Rating Scale for Depression between
CBT and pill placebo was not influenced by baseline severity (interaction
P = 0.43). Removing the non-significant interaction
term from the model, the difference between CBT and pill placebo was a
standardised mean difference of –0.22 (95% CI –0.42 to –0.02,
P = 0.03, I2 = 0%).
Conclusions
Patients suffering from major depression can expect as much benefit from
CBT across the wide range of baseline severity. This finding can help
inform individualised treatment decisions by patients and their
clinicians.
A new generation of solar instruments provides improved spectral, spatial, and temporal resolution, thus facilitating a better understanding of dynamic processes on the Sun. High-resolution observations often reveal multiple-component spectral line profiles, e.g., in the near-infrared He i 10830 Å triplet, which provides information about the chromospheric velocity and magnetic fine structure. We observed an emerging flux region, including two small pores and an arch filament system, on 2015 April 17 with the ‘very fast spectroscopic mode’ of the GREGOR Infrared Spectrograph (GRIS) situated at the 1.5-meter GREGOR solar telescope at Observatorio del Teide, Tenerife, Spain. We discuss this method of obtaining fast (one per minute) spectral scans of the solar surface and its potential to follow dynamic processes on the Sun. We demonstrate the performance of the ‘very fast spectroscopic mode’ by tracking chromospheric high-velocity features in the arch filament system.
This paper is based in part on evidence and insights found in various studies. These studies had as their objects to prove (or at least to demonstrate the plausibility of) either an analysis of a language or a theory of grammar. Their evidence, in addition to that which is new here, demonstrates the difficulty of using superficial relational information for semantic interpretation. It may be noted that, some years ago, Jespersen pointed out many such difficulties, though not with the orientation of relating syntax to semantics.
In a particular success for translational research agendas, characterization of the neuronal circuits underlying fear extinction, and basic research in animal extinction paradigms, has led to intervention studies examining the use of D-cycloserine (DCS) to enhance therapeutic learning from exposure-based cognitive-behavioral therapy (CBT). In this article, we review these intervention studies, and discuss DCS augmentation of CBT relative to more traditional combination-treatment strategies in the treatment of anxiety disorders. We offer an accounting, based on evidence for internal context effects, of current limitations in the combination of antidepressant or benzodiazepine medications with CBT and discuss the advantages of isolated-dosing strategies with DCS relative to these limitations. This strategy is contrasted with the chronic-dosing applications of DCS for schizophrenia and Alzheimer's disease, and future directions for isolated-dosing strategies are discussed.
A modified critical point model dielectric function for graphene is derived here and used to analyze spectroscopic ellipsometry data obtained over a wide spectral range from 3 to 9 eV. Critical point and exciton resonance energies are extracted and discussed. Our findings indicate that epitaxial graphene on SiC to exhibits equivalent exciton behavior to that of suspended graphene. We further apply our model dielectric function to evaluate dielectric function data for highly oriented pyrolytic graphite reported in the literature. Excellent agreement is found between the critical point model developed here and the literature data even for the low energy spectral range up to 1 eV.
Four matrix-phase crystallographic directions of IN718 are investigated by in situ tensile tests using neutron diffraction. The elastic diffraction constants for all directions measured are compared to theoretical values calculated by the Kröner model. The differences between the microscopic and the macroscopic material response are given. The accumulation of microstrains in the different crystallographic directions is discussed. A comparison between the results of a single phase material (ingot IN718) and two differently thermal treated multiphase materials is presented.
The early Neolithic in northern Central Europe ought to be the theatre in which incoming farmers meet local hunter-gatherers, with greater or lesser impact. By way of contrast, the authors use isotope analysis in a cemetery beside the Danube to describe a peaceful, well-integrated community with a common diet and largely indigenous inhabitants. Men and women may have had different mobility strategies, but the isotopes did not signal special origins or diverse food-producing roles. Other explanations attend the variations in the burial rites of individuals and their distribution into cemetery plots.
Although predictions suggest that ocean acidification will significantly impact polar oceans within 20–30 years, there is limited information regarding present-day pH dynamics of the Southern Ocean. Here, we present novel high-frequency observations of pH collected during spring of 2010 using SeaFET pH sensors at three locations under fast sea ice in the southern Ross Sea. During these deployments in McMurdo Sound, baseline pH ranged between 8.019–8.045, with low to moderate overall variation (0.043–0.114 units) on the scale of hours to days. The variation was predominantly in the direction of increased pH relative to baseline observations. Estimates of aragonite saturation state (ΩAr) were > 1 with no observations of subsaturation. Time series records such as these are significant to the Antarctic science community; this information can be leveraged towards framing more environmentally relevant laboratory experiments aimed at assessing the vulnerability of Antarctic species to ocean acidification. In addition, increased spatial and temporal coverage of pH datasets may reveal ecologically significant patterns. Specifically, whether such variation in natural ocean pH dynamics may drive local adaptation to pH variation or provide refugia for populations of marine calcifiers in a future, acidifying ocean.
One of the multiple capabilities of the new Joint Engineering, Environmental and Processing (JEEP) beamline I12 at Diamond Light Source is the set-up for polychromatic high-energy X-ray diffraction for the study of polycrystalline deformation and residual stresses. The results and interpretation of the first experiments carried out on JEEP are reported. Energy dispersive diffraction patterns from titanium alloy Ti-6Al-4V were collected using the new 23-cell ‘horseshoe’ detector and interpreted using Pawley refinement to determine the residual elastic strains at the macro- and meso-scale. It provides a clear demonstration of the tensile-compressive hardening asymmetry of the hexagonal close-packed grains oriented with the basal plane perpendicular to the loading direction.
This paper gives an overview on the standard crystalline silicon solar cell manufacturing processes typically applied in industry. Main focus has been put on plasma processes which can replace existing, mainly wet chemical processes within the standard process flow. Finally, additional plasma processes are presented which are suited for higher-efficient solar cells, i.e. for the “passivated emitter and rear cell” concept (PERC) or the “heterojunction with intrinsic thin layer” approach (HIT). Plasma processes for the deposition of thin dielectric or semiconducting layers for surface passivation, emitter deposition or anti-reflective coating purposes are presented. Plasma etching processes for the removal of phosphorus silicate glass or parasitic emitters, for wafer cleaning and masked and mask-free surface texturisation are discussed.
Congenital arteriovenous malformations are rare causes of congestive cardiac failure in neonates. The most common sites are in the head and liver, but other sites include the thorax, the abdomen and the limbs. The onset of failure is usually not in the immediate neonatal period, but later on in life, albeit that lesions such as the arteriovenous malformation of the vein of Galen, and other arteriovenous malformations in different locations which produce high flow can present early. We describe here the first case, to the best of our knowledge, of prenatal detection of an intrathoracic arteriovenous malformation producing neonatal cardiac failure, which was successfully treated by surgery postnatally.
Using suction electrodes, photocurrent responses to 100-ms saturating flashes were recorded from isolated retinal rods of the larval-stage tiger salamander (Ambystoma tigrinum). The delay period (Te) that preceded recovery of the dark current by a criterion amount (3 pA) was analyzed in relation to the flash intensity (If), and to the corresponding fractional bleach (R*0/Rtot) of the visual pigment; R*0/Rtot was compared with R*s/Rtot the fractional bleach at which the peak level of activated transducin approaches saturation. Over an approximately 8 In unit range of If that included the predicted value of R*s/Rtot, Te increased linearly with In If. Within the linear range, the slope of the function yielded an apparent exponential time constant (TC) of 1.7 ± 0.2 s (mean ± S.D.). Background light reduced the value of Tc measured at a given flash intensity but preserved a range over which Tc increased linearly with In If; the linear-range slope was similar to that measured in the absence of background light. The intensity dependence of Tc resembles that of a delay (Td) seen in light-scattering experiments on bovine retinas, which describes the period of essentially complete activation of transducin following a bright flash; the slope of the function relating Td and In flash intensity is thought to reflect the lifetime of photoactivated visual pigment (R*) (Pepperberg et al., 1988; Kahlert et al., 1990). The present data suggest that the electrophysiological delay has a similar basis in the deactivation kinetics of R*, and that Tc represents TR* the lifetime of R* in the phototransduction process. The results furthermore suggest a preservation of the “dark-adapted” value of TR* within the investigated range of background intensity.