We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known that inertia-free shearing flows of a viscoelastic fluid with curved streamlines, such as the torsional flow between a rotating cone and plate or the flow in a Taylor–Couette geometry, can become unstable to a three-dimensional time-dependent instability at conditions exceeding a critical Weissenberg ($Wi$) number. However, the combined effects of fluid elasticity, shear thinning and finite inertia (as quantified by the Reynolds number $Re$) on the onset of elasto-inertial instabilities are not fully understood. Using a set of cone–plate geometries, we experimentally explore the entire $Wi$–$Re$ phase space for a series of nonlinear viscoelastic fluids (with the dependence on shear rate $\dot{\gamma}$ quantified using a shear-thinning parameter $\beta _P(\dot {\gamma })$). We tune $\beta _P(\dot {\gamma })$ by varying the dissolved polymer concentration in solution. This progressively reduces shear thinning but leads to finite inertial effects before the onset of elastic instability, and thus naturally results in elasto-inertial coupling. Time-resolved rheometric measurements and flow visualization experiments allow us to investigate the effects of flow geometry, and document the combined effects of varying $Wi, Re$ and $\beta _P(\dot {\gamma })$ on the emergence of secondary motions at the onset of instability. The resulting critical state diagram quantitatively depicts the competition between the stabilizing effects of shear thinning and the destabilizing effects of inertia. We extend the curved streamline instability criterion of Pakdel & McKinley (Phys. Rev. Lett., vol. 77, no. 12, 1996, p. 2459) for the onset of purely elastic instability in curvilinear geometries by using scaling arguments to incorporate shear thinning and finite inertial effects. The augmented condition facilitates predictions of the onset of instability over a broader range of flow conditions, and thus bridges the gap between purely elastic and elasto-inertial curved streamline instabilities.
The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus.
Design:
The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance.
Methods:
MBL treatment was used to inactivate coronaviruses on 3 N95 filtering facepiece respirator (FFR) and 2 medical mask models. We inoculated FFR and medical mask materials with 3 coronaviruses, including SARS-CoV-2, and we treated them with 10 µM MB and exposed them to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5 cycles of decontamination using multiple US and international test methods, and the process was compared with the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method.
Results:
Overall, MBL robustly and consistently inactivated all 3 coronaviruses with 99.8% to >99.9% virus inactivation across all FFRs and medical masks tested. FFR and medical mask integrity was maintained after 5 cycles of MBL treatment, whereas 1 FFR model failed after 5 cycles of VHP+O3.
Conclusions:
MBL treatment decontaminated respirators and masks by inactivating 3 tested coronaviruses without compromising integrity through 5 cycles of decontamination. MBL decontamination is effective, is low cost, and does not require specialized equipment, making it applicable in low- to high-resource settings.
Optical microscopy of doubly polished thin sections of North Pennine sphalerite has revealed a range of previously unrecognised textures for the Alston Block mineralisation. Delicate growth zoning, interrupted by numerous solution disconformities, was seen in transmitted light. Two principal varieties of growth-banded sphalerite are recognised; the earlier (Type 1) is characterised by the development of thin opaque bands. Type 2 has colour bands between yellow and brown, correlated with iron content. In Type 1, iron levels (up to 3 wt.%) are not sufficient to account for the observed opacity. Ultra-violet and infra-red techniques failed to detect any organic inclusions. Electron microscopy revealed locally high concentrations of sub-micrometre inclusions, both beam-stable and beam-unstable, and a variety of growth-related crystal defects.
Fluid inclusion thermometry in both sphalerite varieties and the accompanying quartz gangue implies a saline mineralising fluid (20–25 wt.% equiv. NaCl) at a relatively low temperature (100° to 140°C). Tubular inclusions are conspicuous. A deformation-induced lamelliform optical anisotropy is superimposed on a growth-related grid-iron anisotropy. Growth band offset is apparent where the deformation fabric cross-cuts the growth banding. Deformation on {111} twin and slip planes was indicated by electron microscopy.
Understanding of biological impact of proteome profile on meat quality is vital for developing different approaches to improve meat quality. Present study was conducted to unravel the differences in biochemical, ultrastructural and proteome profile of longissimus dorsi muscle between buffaloes (Bubalus bubalis) of different age groups (young v. old). Higher (P<0.05) myofibrillar and total protein extractability, muscle fibre diameter, and Warner-Bratzler shear force (WBSF) values was observed in old buffalo meat relative to meat from young buffaloes. Scanning electron microscopy photographs revealed reduced fibre size with increased inter-myofibrillar space in young compared with old buffalo meat. Transmission electron microscopy results revealed longer sarcomeres in young buffalo meat relative to meat from old buffaloes. Proteomic characterization using two-dimensional gel electrophoresis (2DE) found 93 differentially expressed proteins between old and young buffalo meat. Proteome analysis using 2DE revealed 191 and 95 differentially expressed protein spots after 6 days of ageing in young and old buffalo meat, respectively. The matrix assisted laser desorption ionization time-of flight/time-of flight mass spectrometry (MALDI-TOF/TOF MS) analysis of selected gel spots helped in identifying molecular markers of tenderness mainly consisting of structural proteins. Protein biomarkers identified in the present study have the potential to differentiate meat from young and old buffaloes and pave the way for optimizing strategies for improved buffalo meat quality.
The X-ray spectral distribution of swift heavy Ti and Ni ions
(11 MeV/u) observed inside aerogels (ρ = 0.1
g/cm3) and dense solids (quartz, ρ = 2.23
g/cm3) indicates a strong presence of simultaneous
3–5 charge states with one K-hole. We show that the
theoretical analysis can be split into two tasks: first, the
treatment of complex autoionizing states together with the
originating spectral distribution, and, second, a charge-state
distribution model. Involving the generalized line profile function
theory, we discuss attempts to couple charge-state distributions.
Chemical vapor deposition has been utilized to produce ternary, multiphase coatings of various compositions of silicon carbide (SiC) with Ti, Cr, and Mo. Thermodynamic calculations have been performed for a variety of experimental conditions in each system. Scanning, transmission and analytical electron microscopy, and X-ray diffraction techniques have been used to characterize the microstructures and to determine compositions.
Thin films of β SiC have been grown epitaxically onto on axis (0001) 6H α SiC substrates using ion beam deposition. The ion beam deposition technique involves the direct deposition of alternating layers of 13C+ and 30Si+. The carbon and silicon ions were obtained from an ion implanter by decelerating mass analyzed ion beams to 40 eV. The SiC substrate was held at ∼973 K. Thin films of α-SiC (a mixture of α- polytypes) were obtained following deposition onto off axis (∼2°) 6H α-SiC. High resolution electron microscopy and Rutherford backscattering techniques were used to determine the structure and crystalline perfection of the resulting layers.
Damage in single-crystal β-SiC(100) as a result of ion bombardment has been studied using Rutherford backscattering/channeling and cross-section transmission electron microscopy. Samples were implanted with Al (130 keV) and Si (87 keV) with doses between 4 and 20 × 1014 cm−2 at liquid nitrogen and room temperatures. Backscattering spectra for He+ channeling as a function of implantation dose were initially obtained in the [110] direction to determine damage accumulation. However, the backscattered yield along this direction was shown to be enhanced as a result of uniaxial implantation-induced strain along [100]. Spectra obtained by channeling along this latter direction were used along with the computer program TRIM to calculate the critical energy for amorphization. The results for amorphization of β-SiC at liquid nitrogen and room temperature are ∼ 14.5 eV/atom and ∼ 22.5 eV/atom, respectively.
A Kikuchimap for the 6H polytype of α-SiC has been constructed for the standard triangle Selected, indexed diffraction spot patterns have also been produced and are included as companion information for the map.
Damage in single crystal ß-SiC(100) as a result of ion bombardment has been studied using Rutherford backscattering (RBS) and cross-section transmission electron microscopy (X-TEM). Samples were implanted with 123 keV 27Al at liquid nitrogen temperature. RBS spectra for He channeling in the (110) axis at 45° were obtained as a function of implantation dose to determine damage accumulation. X-TEM was used to characterize damage structure for selected doses. The surface of the SiC becomes amorphous for doses greater than 1 x 1015 /cm 2. At lower doses, significant uniaxial lattice strain along the (100) direction is suggested by comparison of RBS channeling spectra obtained for several high index axes. High resolution TEM on a sample implanted at 4 x 1014 /cm2 shows no damage structure in the surface region; lattice damage in a broad layer centered roughly at the depth of highest energy deposition is characterized by small amorphous pockets in a crystalline matrix. Qualitatively similar backscattering results were obtained for other elements implanted at room and liquid nitrogen temperature.
Pulsed laser annealing and ion beam mixing have been used as surface modification techniques to enhance the physical properties of polycrystalline α-SiC. Thin Ni overlayers (20 nm - 100 nm) were evaporated onto the SiC surface. The specimens were subsequently irradiated with pulses of a ruby or krypton fluoride (KrF) excimer laser or bombarded with high energy Xe+ or Si+ ions. Both processes are non-equilibrium methods and each has been shown to induce unique microstructural changes at the SiC surface which are not attainable by conventional thermal treatments. Under particular (and optimum) processing conditions, these changes considerably increased the mechanical properties of the SiC; following laser irradiation, the fracture strength of the SiC was increased by as much as 50%, but after ion beam mixing, no strength increase was observed.
High resolution cross-section transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and Rutherford backscattering techniques were used to characterize the extent of mixing between the Ni and the SiC as a result of the surface modification.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.