We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multiple Sclerosis (MS) affects up to 500,000 adults in the United States, with cognitive impairment present in 45%-65% of people. Studies showed hippocampal atrophy in MS, but the underlying mechanisms remain unknown. Inflammation has been proposed to play a significant role, and associations between systemic inflammatory biomarkers and hippocampal atrophy have been shown in other neurological conditions. However, research exploring serum biomarker and volumetric associations in MS are lacking. Given that conventional imaging methods lack resolution for hippocampal internal architecture (HIA), new protocols were developed. We used the High-Resolution Multiple Image Co-Registration and Averaging (HR-MICRA) method to visualize the HIA subfields. We investigated the relationship between subfield volumes generated from HR-MICRA scans and systemic serum biomarkers in MS.
Participants and Methods:
Patients with MS were recruited (N= 34, mean age= 54.6, 35.3% Black) underwent Magnetic Resonance Imaging (MRI), and serum biomarkers were obtained, specifically chosen for their potential role in MS. Inflammatory biomarkers included; granulocyte colony stimulating factor (G-CSF), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), tumor necrosis factor- a (TNF- a), and growth factors; vascular endothelial growth factor (VEGF); insulin-like growth factor-1 (IGF-1), and brain derived growth factor (BDNF). Imaging was performed in a Siemens Prisma 3T scanner with a 64-channel head coil using the HR-MICRA method. Hippocampal subfields were calculated using the Automated Segmentation of Hippocampal Subfields (ASHS) package. We used the Magdeburg Young Adult 7T Atlas for sub-hippocampal structures and Penn Temporal Lobe Epilepsy T1-MRI Whole Hippocampus ASHS Atlas for general hippocampal structure and segmentation. Pearson's product-moment analyses provided correlations between biomarkers and hippocampal subfield volumes for each cerebral hemisphere. A statistical significance level of p < 0.05 was used for all analyses.
Results:
Correlations emerged between left hemisphere Cornu Ammonis (CA) 2 and G-CSF (r = -.384; p = .025); IL-10 (r = -.342; p = .048); VEGF (r = -.371; p= .031); and CA3 with IL-10 (r = -.488, p = .003); G-CSF (r = -.386; p= .024); VEGF (r = -.352; p= .041). Dentate gyrus correlated with MMP-9 (r =.416; p=.014); IL-10 (r = -.365; p =.034). BDNF was correlated with right hemisphere CA1 (r = -.417, p = .014), CA2 (r = -.497; p= .003) and CA3 (r = -.451; p=.007).
Conclusions:
In our sample of persons with MS, left hemisphere hippocampal subfield volumes were negatively correlated with inflammatory biomarkers, supporting previous reports linking inflammation to reduced brain volumes in other neurological conditions. In the right hemisphere, we found negative correlations between HIA and BDNF, suggesting a neuroprotective function for BDNF in this neurodegenerative disease. These findings in a representative sample of patients with MS highlight the need for further research exploring the relationship between HIA and systemic serum biomarkers in MS.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.