We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motor neuron disease (MND) is a progressive, fatal, neurodegenerative condition that affects motor neurons in the brain and spinal cord, resulting in loss of the ability to move, speak, swallow and breathe. Acceptance and commitment therapy (ACT) is an acceptance-based behavioural therapy that may be particularly beneficial for people living with MND (plwMND). This qualitative study aimed to explore plwMND’s experiences of receiving adapted ACT, tailored to their specific needs, and therapists’ experiences of delivering it.
Method:
Semi-structured qualitative interviews were conducted with plwMND who had received up to eight 1:1 sessions of adapted ACT and therapists who had delivered it within an uncontrolled feasibility study. Interviews explored experiences of ACT and how it could be optimised for plwMND. Interviews were audio recorded, transcribed and analysed using framework analysis.
Results:
Participants were 14 plwMND and 11 therapists. Data were coded into four over-arching themes: (i) an appropriate tool to navigate the disease course; (ii) the value of therapy outweighing the challenges; (iii) relevance to the individual; and (iv) involving others. These themes highlighted that ACT was perceived to be acceptable by plwMND and therapists, and many participants reported or anticipated beneficial outcomes in the future, despite some therapeutic challenges. They also highlighted how individual factors can influence experiences of ACT, and the potential benefit of involving others in therapy.
Conclusions:
Qualitative data supported the acceptability of ACT for plwMND. Future research and clinical practice should address expectations and personal relevance of ACT to optimise its delivery to plwMND.
Key learning aims
(1) To understand the views of people living with motor neuron disease (plwMND) and therapists on acceptance and commitment therapy (ACT) for people living with this condition.
(2) To understand the facilitators of and barriers to ACT for plwMND.
(3) To learn whether ACT that has been tailored to meet the specific needs of plwMND needs to be further adapted to potentially increase its acceptability to this population.
This study examined associations between pregnancy and infant birth outcomes with child telomere length at age 17 years; and investigated if there are sex differences between pregnancy complications and telomere length. We utilised the population-based prospective Raine cohort study in Western Australia, Australia. 2900 pregnant women were recruited at 16–20 weeks’ gestation (Gen 1), and their children (Gen 2) were followed up over several years. Generalised linear models were used to examine relationships between pregnancy or birth outcomes (gestational diabetes, pre-eclampsia, preterm birth, low birth weight, macrosomia), and as a composite, with telomere length, measured via a DNA sample from blood at 17 years of age. Analyses were adjusted for a range of confounders. Among the 1202 included children, there were no differences in child telomere length for any of the individual maternal or birth weight pregnancy outcomes nor were there any significant interactions between each of the complications (individual or composite) and the sex of the child. However, females born from any of the 5 adverse outcomes had shorter telomeres (estimated mean (SE) = -0.159 (0.061), p = 0.010) than females born in the absence of these complications. Specifically, females born from a pre-eclamptic pregnancy had shorter telomeres than females not born from a pre-eclamptic pregnancy (estimated mean (SE) = -0.166 (0.072), p = 0.022). No relationships were observed in males. Further longitudinal studies are needed to understand mediating factors that are important in predicting offspring telomere length and the necessity to investigate females and males independently.
A clinical tool to estimate the risk of treatment-resistant schizophrenia (TRS) in people with first-episode psychosis (FEP) would inform early detection of TRS and overcome the delay of up to 5 years in starting TRS medication.
Aims
To develop and evaluate a model that could predict the risk of TRS in routine clinical practice.
Method
We used data from two UK-based FEP cohorts (GAP and AESOP-10) to develop and internally validate a prognostic model that supports identification of patients at high-risk of TRS soon after FEP diagnosis. Using sociodemographic and clinical predictors, a model for predicting risk of TRS was developed based on penalised logistic regression, with missing data handled using multiple imputation. Internal validation was undertaken via bootstrapping, obtaining optimism-adjusted estimates of the model's performance. Interviews and focus groups with clinicians were conducted to establish clinically relevant risk thresholds and understand the acceptability and perceived utility of the model.
Results
We included seven factors in the prediction model that are predominantly assessed in clinical practice in patients with FEP. The model predicted treatment resistance among the 1081 patients with reasonable accuracy; the model's C-statistic was 0.727 (95% CI 0.723–0.732) prior to shrinkage and 0.687 after adjustment for optimism. Calibration was good (expected/observed ratio: 0.999; calibration-in-the-large: 0.000584) after adjustment for optimism.
Conclusions
We developed and internally validated a prediction model with reasonably good predictive metrics. Clinicians, patients and carers were involved in the development process. External validation of the tool is needed followed by co-design methodology to support implementation in early intervention services.
We present the third data release from the Parkes Pulsar Timing Array (PPTA) project. The release contains observations of 32 pulsars obtained using the 64-m Parkes ‘Murriyang’ radio telescope. The data span is up to 18 yr with a typical cadence of 3 weeks. This data release is formed by combining an updated version of our second data release with $\sim$3 yr of more recent data primarily obtained using an ultra-wide-bandwidth receiver system that operates between 704 and 4032 MHz. We provide calibrated pulse profiles, flux density dynamic spectra, pulse times of arrival, and initial pulsar timing models. We describe methods for processing such wide-bandwidth observations and compare this data release with our previous release.
Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species’ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat forthe Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”.
The objective of this study was to investigate changes in serum biomarkers of acute brain injury, including white matter and astrocyte injury during chronic foetal hypoxaemia. We have previously shown histopathological changes in myelination and neuronal density in fetuses with chronic foetal hypoxaemia at a level consistent with CHD.
Methods:
Mid-gestation foetal sheep (110 ± 3 days gestation) were cannulated and attached to a pumpless, low-resistance oxygenator circuit, and incubated in a sterile fluid environment mimicking the intrauterine environment. Fetuses were maintained with an oxygen delivery of 20–25 ml/kg/min (normoxemia) or 14–16 ml/kg/min (hypoxaemia). Myelin Basic Protein and Glial Fibrillary Acidic Protein serum levels in the two groups were assessed by ELISA at baseline and at 7, 14, and 21 days of support.
Results:
Based on overlapping 95% confidence intervals, there were no statistically significant differences in either Myelin Basic Protein or Glial Fibrillary Acidic Protein serum levels between the normoxemic and hypoxemic groups, at any time point. No statistically significant correlations were observed between oxygen delivery and levels of Myelin Basic Protein and Glial Fibrillary Acidic Protein.
Conclusion:
Chronic foetal hypoxaemia during mid-gestation is not associated with elevated serum levels of acute white matter (Myelin Basic Protein) or astrocyte injury (Glial Fibrillary Acidic Protein), in this model. In conjunction with our previously reported findings, our data support the hypothesis that the brain dysmaturity with impaired myelination found in fetuses with chronic hypoxaemia is caused by disruption of normal developmental pathways rather than by direct cellular injury.
Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
We describe 14 yr of public data from the Parkes Pulsar Timing Array (PPTA), an ongoing project that is producing precise measurements of pulse times of arrival from 26 millisecond pulsars using the 64-m Parkes radio telescope with a cadence of approximately 3 weeks in three observing bands. A comprehensive description of the pulsar observing systems employed at the telescope since 2004 is provided, including the calibration methodology and an analysis of the stability of system components. We attempt to provide full accounting of the reduction from the raw measured Stokes parameters to pulse times of arrival to aid third parties in reproducing our results. This conversion is encapsulated in a processing pipeline designed to track provenance. Our data products include pulse times of arrival for each of the pulsars along with an initial set of pulsar parameters and noise models. The calibrated pulse profiles and timing template profiles are also available. These data represent almost 21 000 h of recorded data spanning over 14 yr. After accounting for processes that induce time-correlated noise, 22 of the pulsars have weighted root-mean-square timing residuals of
$<\!\!1\,\mu\text{s}$
in at least one radio band. The data should allow end users to quickly undertake their own gravitational wave analyses, for example, without having to understand the intricacies of pulsar polarisation calibration or attain a mastery of radio frequency interference mitigation as is required when analysing raw data files.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (
${\sim}60\%$
), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
Measurements of a sample from ~580 m depth in the WAIS Divide (WDC06A) ice core reveal that bubbles are preferentially elongated in the basal plane of their parent grain, as expected if bubble shape preserves the record of dominant basal glide. This suggests that a method using bubbles as strain gauges could provide insights to grain-scale ice deformation. We introduce a technique using fabric and image analyses of paired thin and thick sections. Comparison of the crystallographic orientations of 148 grains and the shape orientations of 2377 intragrain bubbles reveals a strongly preferred elongation of bubbles in the grain basal planes (R2 = 0.96). Elongation magnitudes are consistent with a balance between ice flow deformation and diffusive restoration, with larger bubbles more elongated. Assuming bubbles record ice strain, grains with greater resolved stress on their basal planes from the far-field ice flow stresses show greater deformation, but with large variability suggesting that heterogeneity of the local stress field causes deformation even in unfavorably oriented grains. A correlation is also observed among bubble elongation, grain size, and bubble size, explaining a small but significant fraction of the variance ( P< 0.05), with implications for controls on ice deformation, as discussed here.
Earlier reports have summarized crop yield losses throughout various North American regions if weeds were left uncontrolled. Offered here is a report from the current WSSA Weed Loss Committee on potential yield losses due to weeds based on data collected from various regions of the United States and Canada. Dry bean yield loss estimates were made by comparing dry bean yield in the weedy control with plots that had >95% weed control from research studies conducted in dry bean growing regions of the United States and Canada over a 10-year period (2007 to 2016). Results from these field studies showed that dry bean growers in Idaho, Michigan, Montana, Nebraska, North Dakota, South Dakota, Wyoming, Ontario, and Manitoba would potentially lose an average of 50%, 31%, 36%, 59%, 94%, 31%, 71%, 56%, and 71% of their dry bean yield, respectively. This equates to a monetary loss of US $36, 40, 6, 56, 421, 2, 18, 44, and 44 million, respectively, if the best agronomic practices are used without any weed management tactics. Based on 2016 census data, at an average yield loss of 71.4% for North America due to uncontrolled weeds, dry bean production in the United States and Canada would be reduced by 941,000,000 and 184,000,000 kg, valued at approximately US $622 and US $100 million, respectively. This study documents the dramatic yield and monetary losses in dry beans due to weed interference and the importance of continued funding for weed management research to minimize dry bean yield losses.
Objectives: The aim of this study was to evaluate the impact of computer-assisted “drill-and-strategy” cognitive remediation (CR) for community-dwelling individuals with schizophrenia on cognition, everyday self-efficacy, and independent living skills. Methods: Fifty-six people with schizophrenia or schizoaffective disorder were randomized into CR or computer game (CG) playing (control), and offered twenty 1-hr individual sessions in a group setting over 10 weeks. Measures of cognition, psychopathology, self-efficacy, quality of life, and independent living skills were conducted at baseline, end-group and 3 months following intervention completion. Results: Forty-three participants completed at least 10 sessions and the end-group assessment. Linear mixed-effect analyses among completers demonstrated a significant interaction effect for global cognition favoring CR (p=.028). CR-related cognitive improvement was sustained at 3-months follow-up. At end-group, 17 (77%) CR completers showed a reliable improvement in at least one cognitive domain. A significant time effect was evident for self-efficacy (p=.028) with both groups improving over time, but no significant interaction effect was observed. No significant effects were found for other study outcomes, including the functional measure. Conclusions: Computer-assisted drill-and-strategy CR in schizophrenia improved cognitive test performance, while participation in both CR and CG playing promoted enhancements in everyday self-efficacy. Changes in independent living skills did not appear to result from CR, however. Adjunctive psychosocial rehabilitation is likely necessary for improvements in real-world community functioning to be achieved. (JINS, 2018, 24, 549–562)
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending 50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
Imaging bundles provide a convenient way to translate a spatially coherent image, yet conventional imaging bundles made from silica fibre optics typically remain expensive with large losses due to poor filling factors (~40%). We present the characterisation of a novel polymer imaging bundle made from poly(methyl methacrylate) (PMMA) that is considerably cheaper and a better alternative to silica imaging bundles over short distances (~1 m; from the middle to the edge of a telescope’s focal plane). The large increase in filling factor (92% for the polymer imaging bundle) outweighs the large increase in optical attenuation from using PMMA (1 dB/m) instead of silica (10−3 dB/m). We present and discuss current and possible future multi-object applications of the polymer imaging bundle in the context of astronomical instrumentation including: field acquisition, guiding, wavefront sensing, narrow-band imaging, aperture masking, and speckle imaging. The use of PMMA limits its use in low-light applications (e.g., imaging of galaxies); however, it is possible to fabricate polymer imaging bundles from a range of polymers that are better suited to the desired science.
The stability of a low Reynolds number flow on an inclined plane is investigated with respect to modelling the initiation of transverse wave-like ridges which commonly occur on the surfaces of rock-glacier forms. In accordance with field observations indicating the presence of stratification in rock glaciers, two models of rock-glacier structure are considered, each stratified and possessing a lower layer which is treated as a Newtonian fluid. An upper, less compliant layer is treated, alternatively, as a Newtonian fluid of viscosity greater than that of the lower layer, or as an elastic solid under longitudinal compression induced by a decrease in the slope of the underlying incline. A linear stability analysis is used to examine the behaviour of each of the proposed models, and both are found to generate instabilities at wavelengths comparable to those associated with transverse surficial ridges on rock glaciers. The growth rates of a flow disturbance predicted by the viscous-stratified model appear to be too slow to account fully for the development of wave forms of finite amplitude, suggesting that other mechanisms are involved in the amplification of an initial disturbance. The results of the stability analysis of the elastic lamina model indicate that finite surficial ridges may develop on rock glaciers as a product of a buckling instability in the surface region if there is a decrease in the slope of the underlying incline. Both of the analyses illustrate that transverse ridges can occur on the surface of a rock glacier in the absence of any variations in debris supply to the system. The results further imply that the use of these features in the paleoreconstruction of Holocene climatic conditions must entail an assessment of the relative roles of external climatically driven forcing versus internal Theologically derived instability.