We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Seed genebanks must maintain collections of healthy seeds and regenerate accessions before seed viability declines. Seed shelf life is often characterized at the species level; however, large, unexplained variation among genetic lines within a species can and does occur. This variation contributes to unreliable predictions of seed quality decline with storage time. To assess variation of seed longevity and aid in timing regeneration, ten varieties of pea (Pisum sativum L.), chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medikus subsp. culinaris) from the Australian Grains Genebank were stored at moderate temperature (20°C) and moisture (7–11% water, relative humidity [RH] ~30%) and deterioration was assessed by yearly germination tests for 20 years. Decline in germination was fit to a sigmoidal model and the time corresponding to 50% germination (P50) was used to express seed longevity for each genetic line. The feasibility of using RNA fragmentation to assess changed seed health was measured using RNA integrity number (RIN) from RNA extracted from seeds that were stored for 13 and 20 years. Seed lots of legume grains that maintained high survival throughout the 20 years (i.e. they aged slower than other lines) had higher RIN than samples that degraded faster. RIN was lower in embryonic axes compared with cotyledons in the more deteriorated samples, perhaps indicating that axes exhibit symptoms of ageing sooner than cotyledons. Overall, RIN appears to be associated with longevity indicators of germination for these legumes and indicating that RIN decline can be used to assess ageing rate, which is needed to optimize viability monitoring.
Ust’-Polui is one of the most extensively studied archaeological sites in the western Siberian Arctic. New radiocarbon (14C) dates for charcoal, faunal remains, bark, hide, and human bone from this site are presented. When modeled, the charcoal dates span from ~260 BC to 140 AD, overlapping with the dendrochronology dates from the site. These dates also overlap with the expected age of the site based on artefact typology. 14C dates on reindeer bone have a slightly younger modeled age range, from ~110 BC to 350 AD. In contrast, dates on the site’s numerous dog remains, and on human and fish bone, all predate these modeled age ranges by over 500 years, despite being from the same deposits. Several sets of paired dates demonstrate significant age differences. Bone dates with lower δ13C values tend to be over 500 years older than those with higher δ13C values. Stable isotope data for the humans, dogs, and other faunal remains are also presented. These data suggest the dogs and the humans were regularly consuming freshwater fish. The dogs were probably fed fish by their human counterparts. Overall, the dog and human dietary patterns at Ust’-Polui created 14C dates biased with major freshwater reservoir effects.
Alternative herbicide formulations may have the potential to reduce atrazine leaching. This study was conducted to determine if starch-encapsulation produced using an extrusion process or several acrylic polymer additives reduced atrazine leaching in soil columns packed with Plainfield sand (98% sand and 0.7% organic matter). Three watering regimes were evaluated to determine the effects of water volume and rate of application on atrazine movement When 7.6 cm of water (0.44-pore volumes) was applied over 2 h, polymer treatments reduced atrazine movement from the soil surface by 9 to 21% compared to atrazine without the additives. With increased water volume and time, the effectiveness of several polymer treatments diminished. Acrysol ASE-108 and G110 polymers (mixed with atrazine at a 1:1 ratio) most effectively reduced atrazine leaching over all watering regimes. Starch encapsulation was more effective than any polymer additive in retarding atrazine movement Increasing the water volume from 7.6 to 15.2 cm (0.88-pore volumes) did not increase leaching of starch-encapsulated atrazine. Ninety-nine percent of the starch-encapsulated atrazine was retained in the top 5 cm of the column compared to only 18 and 13% of the dry flowable formulation (DF) when 0.44- and 0.88-pore volumes of water were applied over 2 and 4 h, respectively. When 0.88-pore volumes of water were applied over 12 d, 81% of the starch-encapsulated atrazine was retained in the upper 5 cm of the column compared to only 5% of the DF formulation of atrazine. This study indicates that starch encapsulation reduces atrazine movement to a greater extent than polymer additives and suggests that starch encapsulation may be an effective method of reducing atrazine leaching.
The effect of three spray variables (droplet number, active ingredient concentration, and droplet size) on uptake and translocation of formulated 14C-triclopyr ester was studied in greenhouse-grown Populus tremuloides seedlings. The dose per plant in all treatments was held constant. In all experiments, absorption (as a percentage of dose applied) was much greater than translocation (as percentage of dose absorbed). Absorption and translocation decreased as concentration (ai) was increased and droplet number decreased. Absorption and translocation also decreased as droplet number decreased and droplet size increased. When concentration (ai) was increased and droplet size decreased, absorption again decreased but to a much lesser extent than in the other two experiments; there was no significant effect on translocation. A time-course experiment indicated that uptake rate began to decrease within 1.5 h of application. The rate of decrease was greater at the higher concentration (ai), suggesting that the decrease was associated with contact injury. A model to integrate the application parameters and translocation gave a high correlation between dose per unit droplet stain circumference and translocation.
Disorganized attachment is an important early risk factor for socioemotional problems throughout childhood and into adulthood. Prevailing models of the etiology of disorganized attachment emphasize the role of highly dysfunctional parenting, to the exclusion of complex models examining the interplay of child and parental factors. Decades of research have established that extreme child birth weight may have long-term effects on developmental processes. These effects are typically negative, but this is not always the case. Recent studies have also identified the dopamine D4 receptor (DRD4) as a moderator of childrearing effects on the development of disorganized attachment. However, there are inconsistent findings concerning which variant of the polymorphism (seven-repeat long-form allele or non–seven-repeat short-form allele) is most likely to interact with caregiving in predicting disorganized versus organized attachment. In this study, we examined possible two- and three-way interactions and child DRD4 polymorphisms and birth weight and maternal caregiving at age 6 months in longitudinally predicting attachment disorganization at 36 months. Our sample is from the Maternal Adversity, Vulnerability and Neurodevelopment project, a sample of 650 mother–child dyads. Birth weight was cross-referenced with normative data to calculate birth weight percentile. Infant DRD4 was obtained with buccal swabs and categorized according to the presence of the putative allele seven repeat. Macroanalytic and microanalytic measures of maternal behavior were extracted from a videotaped session of 20 min of nonfeeding interaction followed by a 10-min divided attention maternal task at 6 months. Attachment was assessed at 36 months using the Strange Situation procedure, and categorized into disorganized attachment and others. The results indicated that a main effect for DRD4 and a two-way interaction of birth weight and 6-month maternal attention (frequency of maternal looking away behavior) and sensitivity predicted disorganized attachment in robust logistic regression models adjusted for social demographic covariates. Specifically, children in the midrange of birth weight were more likely to develop a disorganized attachment when exposed to less attentive maternal care. However, the association reversed with extreme birth weight (low and high). The DRD4 seven-repeat allele was associated with less disorganized attachment (protective), while non–seven-repeat children were more likely to be classified as disorganized attachment. The implications for understanding inconsistencies in the literature about which DRD4 genotype is the risk direction are also considered. Suggestions for intervention with families with infants at different levels of biological risk and caregiving risk are also discussed.
To investigate: (i) the percentage of the New Zealand (NZ) population reporting fast food/takeaway food and restaurant/café food per day; (ii) examine demographic factors associated with their use; (iii) quantify their contribution to energy intake; and (iv) describe the specific types of foods reported from both sources.
Design
Twenty-four hour diet recalls from the cross-sectional 2008/09 NZ Adult Nutrition Survey were used to identify fast-food and restaurant-food consumers.
Setting
NZ households.
Subjects
Adults aged 15 years and older (n 4721).
Results
Overall 28 % reported consuming at least one fast food and 14 % a restaurant food within the 24 h diet recall. Fast-food consumption was not associated with level of education or an area-based measure of socio-economic status, but a higher education was positively associated with restaurant-food consumption. Individual factors such as ethnicity, household size, age, sex and marital status were found to be important influences on the use of fast food and restaurant food. Fast-food consumption was more prevalent among participants living in urban areas, young adults (19–30 years) and Māori compared with NZ European and Others. The most frequently reported fast foods were bread-based dishes, potatoes (including fries) and non-alcoholic beverages.
Conclusions
Given the high reported consumption of fast food by young adults, health promotion initiatives both to improve the nutritional quality of fast-food menus and to encourage healthier food choices would likely make a large impact on the overall diet quality of this group.
This practical 2003 handbook provides an extremely comprehensive and highly illustrated guide to micromanipulation techniques in assisted conception in a clinical setting. It includes detailed, illustrated descriptions of all the common micromanipulation systems currently in use in IVF laboratories around the world and clearly explains how to optimise their successful use. The volume covers state-of-the-art techniques including intracytoplasmic sperm injection (ICSI), and procedures such as assisted hatching and the blastomere biopsy (for preimplantation genetic diagnosis PGD). Valuable information on troubleshooting the potential mechanical and technical difficulties that can arise is provided to help all the practitioners of these techniques, including trainee embryologists and consultant obstetricians, and technicians and scientists involved in animal transgenesis and cloning. It will undoubtedly be of immense value to all doctors and scientists working with assisted reproductive technologies.
We present femtosecond mid-infrared (mid-IR) studies of the broadband low-energy response of individualized (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed in these semiconducting tubes around 200 meV photon energy. The transition energy and broadly sloping spectral shape are characteristic of quasi 1D intra-excitonic transitions between different relative-momentum states. Our result yields a value of the intra-excitonic absorption cross section of σ∥MIR≈4×10-5.
Outlined are two main current research concerns relating to skeletal disorders in poultry: (a) osteoporosis in egg-laying hens; (b) leg problems caused by rapid bone growth in broiler chickens. Surveys indicate that 30% of caged laying hens suffer at least one lifetime fracture (a severe welfare issue). Modern hybrids produce one egg per d for 50 weeks. For this period ‘normal’ bone turnover ceases; only medullary bone (MB) is formed, a woven bone type of limited structural value. MB is resorbed for eggshell formation alongside structural bone, leading to increased fracture risk. Avian osteoporosis is reduced by activity and genetic selection but nutrition is also important. Fluoride and vitamin K are beneficial but the timing of nutritional intervention is important. Ca, inorganic P and vitamin D must be adequate and the form of Ca is critical. Limestone fed as particulates benefits skeletal and eggshell quality. In hens fed particulate limestone compared with flour-fed hens the tibiotarsus breaking strength and radiographic density are increased at 56 weeks of age (P<0·01 and P<0·001 respectively) and the number of tartrate-resistant acid phosphatase-positive stained active osteoclasts (mean number per microscopic field) is decreased (P<0·001). In broiler (meat) chickens selection for rapid growth from approximately 50 g to 3 kg in 42 d has inadvertently produced skeletal disorders such as tibial dyschondroplasia, rickets and associated valgus–varus deformities leading to lameness. The beneficial skeletal effects during growth of increased dietary n-3 PUFA:n-6 PUFA (utilising salmon oil) have been demonstrated. Experiments simulating daylight UVB levels have produced beneficial skeletal effects in Ca- and vitamin D-deficient chicks.