We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The Cassini Visual Infrared Mapping Spectrometer (VIMS) spans a wavelength range of 0.34 to 5.2 µm. Executing numerous close targeted flybys of the major moons of Saturn, as well as serendipitous flybys of the smaller moons, VIMS gathered millions of spectra of these bodies during its 13-year mission, some at spatial resolutions of a few hundred meters. The surfaces of the inner moons are dominated by water ice, while Iapetus, Hyperion, and Titan have substantial amounts of dark materials, including hydrocarbons, on their surfaces. Phoebe is grayer in color in the visible than Saturn’s other low-albedo moons. The surfaces of the inner small moons are also dominated by water ice, and they share compositional similarities to the main rings. The optical properties of the main moons are affected by particles from Saturn’s rings: the inner moons are coated by the E-ring, which originates from cryoactivity on Enceladus, while Iapetus and Hyperion are coated by particles from the Phoebe ring. Cassini VIMS detected previously unknown volatiles and organics on these moons, including CO2, H2, organic molecules as complex as aromatic hydrocarbons, nano-iron, and nano-iron oxides.
This collection of essays pays tribute to Nancy Freeman Regalado, a ground-breaking scholar in the field of medieval French literature whose research has always pushed beyond disciplinary boundaries. The articles in the volume reflect the depth and diversity of her scholarship, as well as her collaborations with literary critics, philologists, historians, art historians, musicologists, and vocalists - in France, England, and the United States. Inspired by her most recent work, these twenty-four essays are tied together by a single question, rich in ramifications: how does performance shape our understanding of medieval and pre-modern literature and culture, whether the nature of that performance is visual, linguistic, theatrical, musical, religious, didactic, socio-political, or editorial? The studies presented here invite us to look afresh at the interrelationship of audience, author, text, and artifact, to imagine new ways of conceptualizing the creation, transmission, and reception of medieval literature, music, and art.
EGLAL DOSS-QUINBY is Professor of French at Smith College; ROBERTA L. KRUEGER is Professor of French at Hamilton College; E. JANE BURNS is Professor of Women's Studies and Adjunct Professor of Comparative Literature at the University of North Carolina, Chapel Hill.
Contributors: ANNE AZÉMA, RENATE BLUMENFELD-KOSINSKI, CYNTHIA J. BROWN, ELIZABETH A. R. BROWN, MATILDA TOMARYN BRUCKNER, E. JANE BURNS, ARDIS BUTTERFIELD, KIMBERLEE CAMPBELL, ROBERT L. A. CLARK, MARK CRUSE, KATHRYN A. DUYS, ELIZABETH EMERY, SYLVIA HUOT, MARILYN LAWRENCE, KATHLEEN A. LOYSEN, LAURIE POSTLEWATE, EDWARD H. ROESNER, SAMUEL N. ROSENBERG, LUCY FREEMAN SANDLER, PAMELA SHEINGORN, HELEN SOLTERER, JANE H. M. TAYLOR, EVELYN BIRGE VITZ, LORI J. WALTERS, AND MICHEL ZINK.
In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.
This paper describes the system architecture of a newly constructed radio telescope – the Boolardy engineering test array, which is a prototype of the Australian square kilometre array pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a six-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least nine dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.