We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
It has been observed that the number of different ways in which a graph with p points can be labelled is p! divided by the number of symmetries, and that this holds regardless of the species of structure at hand. In this note, a simple group-theoretic proof is provided.
A problem of considerable interest in combinatorial analysis is that of determining the number of ways in which a connected figure can be constructed in the plane by assembling n regular hexagons in such a way that two hexagons abut on each other, if at all, along the whole of a common edge. Examples of these constructions can be seen in the various figures in this paper.
The aim of this paper is to present a unified treatment of certain theorems in Combinatorial Analysis (particularly in enumerative graph theory), and their relations to various results concerning symmetric functions and the characters of the symmetric groups. In particular, it treats of the simplification that is achieved by working with S-functions in preference to other symmetric functions when dealing with combinatorial problems. In this way it helps to draw closer together the two subjects of Combinatorial Analysis and the theory of Finite Groups. The paper is mainly expository; it contains little that is really new, though it displays several old results in a new setting.
In this paper we shall derive a concise formula for the number of Euler graphs on n labelled nodes and k edges. An Euler graph is a connected graph in which every node has even valency, where by the valency of a node is meant the number of edges which are incident with that node. Throughout most of the paper we shall be dealing with graphs whose nodes have even valencies but which may or may not be connected. For convenience we shall refer to these graphs as Euler graphs, although the usage is not, strictly speaking, correct. We shall impose the condition of connectedness in § 4.
Email your librarian or administrator to recommend adding this to your organisation's collection.