We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cognitive training is a non-pharmacological intervention aimed at improving cognitive function across a single or multiple domains. Although the underlying mechanisms of cognitive training and transfer effects are not well-characterized, cognitive training has been thought to facilitate neural plasticity to enhance cognitive performance. Indeed, the Scaffolding Theory of Aging and Cognition (STAC) proposes that cognitive training may enhance the ability to engage in compensatory scaffolding to meet task demands and maintain cognitive performance. We therefore evaluated the effects of cognitive training on working memory performance in older adults without dementia. This study will help begin to elucidate non-pharmacological intervention effects on compensatory scaffolding in older adults.
Participants and Methods:
48 participants were recruited for a Phase III randomized clinical trial (Augmenting Cognitive Training in Older Adults [ACT]; NIH R01AG054077) conducted at the University of Florida and University of Arizona. Participants across sites were randomly assigned to complete cognitive training (n=25) or an education training control condition (n=23). Cognitive training and the education training control condition were each completed during 60 sessions over 12 weeks for 40 hours total. The education training control condition involved viewing educational videos produced by the National Geographic Channel. Cognitive training was completed using the Posit Science Brain HQ training program, which included 8 cognitive training paradigms targeting attention/processing speed and working memory. All participants also completed demographic questionnaires, cognitive testing, and an fMRI 2-back task at baseline and at 12-weeks following cognitive training.
Results:
Repeated measures analysis of covariance (ANCOVA), adjusted for training adherence, transcranial direct current stimulation (tDCS) condition, age, sex, years of education, and Wechsler Test of Adult Reading (WTAR) raw score, revealed a significant 2-back by training group interaction (F[1,40]=6.201, p=.017, η2=.134). Examination of simple main effects revealed baseline differences in 2-back performance (F[1,40]=.568, p=.455, η2=.014). After controlling for baseline performance, training group differences in 2-back performance was no longer statistically significant (F[1,40]=1.382, p=.247, η2=.034).
Conclusions:
After adjusting for baseline performance differences, there were no significant training group differences in 2-back performance, suggesting that the randomization was not sufficient to ensure adequate distribution of participants across groups. Results may indicate that cognitive training alone is not sufficient for significant improvement in working memory performance on a near transfer task. Additional improvement may occur with the next phase of this clinical trial, such that tDCS augments the effects of cognitive training and results in enhanced compensatory scaffolding even within this high performing cohort. Limitations of the study include a highly educated sample with higher literacy levels and the small sample size was not powered for transfer effects analysis. Future analyses will include evaluation of the combined intervention effects of a cognitive training and tDCS on nback performance in a larger sample of older adults without dementia.
Cognitive training has shown promise for improving cognition in older adults. Aging involves a variety of neuroanatomical changes that may affect response to cognitive training. White matter hyperintensities (WMH) are one common age-related brain change, as evidenced by T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) MRI. WMH are associated with older age, suggestive of cerebral small vessel disease, and reflect decreased white matter integrity. Higher WMH load associates with reduced threshold for clinical expression of cognitive impairment and dementia. The effects of WMH on response to cognitive training interventions are relatively unknown. The current study assessed (a) proximal cognitive training performance following a 3-month randomized control trial and (b) the contribution of baseline whole-brain WMH load, defined as total lesion volume (TLV), on pre-post proximal training change.
Participants and Methods:
Sixty-two healthy older adults ages 65-84 completed either adaptive cognitive training (CT; n=31) or educational training control (ET; n=31) interventions. Participants assigned to CT completed 20 hours of attention/processing speed training and 20 hours of working memory training delivered through commercially-available Posit Science BrainHQ. ET participants completed 40 hours of educational videos. All participants also underwent sham or active transcranial direct current stimulation (tDCS) as an adjunctive intervention, although not a variable of interest in the current study. Multimodal MRI scans were acquired during the baseline visit. T1- and T2-weighted FLAIR images were processed using the Lesion Segmentation Tool (LST) for SPM12. The Lesion Prediction Algorithm of LST automatically segmented brain tissue and calculated lesion maps. A lesion threshold of 0.30 was applied to calculate TLV. A log transformation was applied to TLV to normalize the distribution of WMH. Repeated-measures analysis of covariance (RM-ANCOVA) assessed pre/post change in proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures in the CT group compared to their ET counterparts, controlling for age, sex, years of education and tDCS group. Linear regression assessed the effect of TLV on post-intervention proximal composite and sub-composite, controlling for baseline performance, intervention assignment, age, sex, years of education, multisite scanner differences, estimated total intracranial volume, and binarized cardiovascular disease risk.
Results:
RM-ANCOVA revealed two-way group*time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures compared to their ET counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on Processing Speed Training sub-composite (ß = -0.19, p = 0.04) but not other composite measures.
Conclusions:
These findings demonstrate the utility of cognitive training for improving postintervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appear to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Cognitive training using a visual speed-of-processing task, called the Useful Field of View (UFOV) task, reduced dementia risk and reduced decline in activities of daily living at a 10-year follow-up in older adults. However, there is variability in the level of cognitive gains after cognitive training across studies. One potential explanation for this variability could be moderating factors. Prior studies suggest variables moderating cognitive training gains share features of the training task. Learning trials of the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) recruit similar cognitive abilities and have overlapping neural correlates with the UFOV task and speed-ofprocessing/working memory tasks and therefore could serve as potential moderators. Exploring moderating factors of cognitive training gains may boost the efficacy of interventions, improve rigor in the cognitive training literature, and eventually help provide tailored treatment recommendations. This study explored the association between the HVLT-R and BVMT-R learning and the UFOV task, and assessed the moderation of HVLT-R and BVMT-R learning on UFOV improvement after a 3-month speed-ofprocessing/attention and working memory cognitive training intervention in cognitively healthy older adults.
Participants and Methods:
75 healthy older adults (M age = 71.11, SD = 4.61) were recruited as part of a larger clinical trial through the Universities of Florida and Arizona. Participants were randomized into a cognitive training (n=36) or education control (n=39) group and underwent a 40-hour, 12-week intervention. Cognitive training intervention consisted of practicing 4 attention/speed-of-processing (including the UFOV task) and 4 working memory tasks. Education control intervention consisted of watching 40-minute educational videos. The HVLT-R and BVMT-R were administered at the pre-intervention timepoint as part of a larger neurocognitive battery. The learning ratio was calculated as: trial 3 total - trial 1 total/12 - trial 1 total. UFOV performance was measured at pre- and post-intervention time points via the POSIT Brain HQ Double Decision Assessment. Multiple linear regressions predicted baseline Double Decision performance from HVLT-R and BVMT-R learning ratios controlling for study site, age, sex, and education. A repeated measures moderation analysis assessed the moderation of HVLT-R and BVMT-R learning ratio on Double Decision change from pre- to post-intervention for cognitive training and education control groups.
Results:
Baseline Double Decision performance significantly associated with BVMT-R learning ratio (β=-.303, p=.008), but not HVLT-R learning ratio (β=-.142, p=.238). BVMT-R learning ratio moderated gains in Double Decision performance (p<.01); for each unit increase in BVMT-R learning ratio, there was a .6173 unit decrease in training gains. The HVLT-R learning ratio did not moderate gains in Double Decision performance (p>.05). There were no significant moderations in the education control group.
Conclusions:
Better visuospatial learning was associated with faster Double Decision performance at baseline. Those with poorer visuospatial learning improved most on the Double Decision task after training, suggesting that healthy older adults who perform below expectations may show the greatest training gains. Future cognitive training research studying visual speed-of-processing interventions should account for differing levels of visuospatial learning at baseline, as this could impact the magnitude of training outcomes.
Aging is associated with disruptions in functional connectivity within the default mode (DMN), frontoparietal control (FPCN), and cingulo-opercular (CON) resting-state networks. Greater within-network connectivity predicts better cognitive performance in older adults. Therefore, strengthening network connectivity, through targeted intervention strategies, may help prevent age-related cognitive decline or progression to dementia. Small studies have demonstrated synergistic effects of combining transcranial direct current stimulation (tDCS) and cognitive training (CT) on strengthening network connectivity; however, this association has yet to be rigorously tested on a large scale. The current study leverages longitudinal data from the first-ever Phase III clinical trial for tDCS to examine the efficacy of an adjunctive tDCS and CT intervention on modulating network connectivity in older adults.
Participants and Methods:
This sample included 209 older adults (mean age = 71.6) from the Augmenting Cognitive Training in Older Adults multisite trial. Participants completed 40 hours of CT over 12 weeks, which included 8 attention, processing speed, and working memory tasks. Participants were randomized into active or sham stimulation groups, and tDCS was administered during CT daily for two weeks then weekly for 10 weeks. For both stimulation groups, two electrodes in saline-soaked 5x7 cm2 sponges were placed at F3 (cathode) and F4 (anode) using the 10-20 measurement system. The active group received 2mA of current for 20 minutes. The sham group received 2mA for 30 seconds, then no current for the remaining 20 minutes.
Participants underwent resting-state fMRI at baseline and post-intervention. CONN toolbox was used to preprocess imaging data and conduct region of interest (ROI-ROI) connectivity analyses. The Artifact Detection Toolbox, using intermediate settings, identified outlier volumes. Two participants were excluded for having greater than 50% of volumes flagged as outliers. ROI-ROI analyses modeled the interaction between tDCS group (active versus sham) and occasion (baseline connectivity versus postintervention connectivity) for the DMN, FPCN, and CON controlling for age, sex, education, site, and adherence.
Results:
Compared to sham, the active group demonstrated ROI-ROI increases in functional connectivity within the DMN following intervention (left temporal to right temporal [T(202) = 2.78, pFDR < 0.05] and left temporal to right dorsal medial prefrontal cortex [T(202) = 2.74, pFDR < 0.05]. In contrast, compared to sham, the active group demonstrated ROI-ROI decreases in functional connectivity within the FPCN following intervention (left dorsal prefrontal cortex to left temporal [T(202) = -2.96, pFDR < 0.05] and left dorsal prefrontal cortex to left lateral prefrontal cortex [T(202) = -2.77, pFDR < 0.05]). There were no significant interactions detected for CON regions.
Conclusions:
These findings (a) demonstrate the feasibility of modulating network connectivity using tDCS and CT and (b) provide important information regarding the pattern of connectivity changes occurring at these intervention parameters in older adults. Importantly, the active stimulation group showed increases in connectivity within the DMN (a network particularly vulnerable to aging and implicated in Alzheimer’s disease) but decreases in connectivity between left frontal and temporal FPCN regions. Future analyses from this trial will evaluate the association between these changes in connectivity and cognitive performance post-intervention and at a one-year timepoint.
Nonpathological aging has been linked to decline in both verbal and visuospatial memory abilities in older adults. Disruptions in resting-state functional connectivity within well-characterized, higherorder cognitive brain networks have also been coupled with poorer memory functioning in healthy older adults and in older adults with dementia. However, there is a paucity of research on the association between higherorder functional connectivity and verbal and visuospatial memory performance in the older adult population. The current study examines the association between resting-state functional connectivity within the cingulo-opercular network (CON), frontoparietal control network (FPCN), and default mode network (DMN) and verbal and visuospatial learning and memory in a large sample of healthy older adults. We hypothesized that greater within-network CON and FPCN functional connectivity would be associated with better immediate verbal and visuospatial memory recall. Additionally, we predicted that within-network DMN functional connectivity would be associated with improvements in delayed verbal and visuospatial memory recall. This study helps to glean insight into whether within-network CON, FPCN, or DMN functional connectivity is associated with verbal and visuospatial memory abilities in later life.
Participants and Methods:
330 healthy older adults between 65 and 89 years old (mean age = 71.6 ± 5.2) were recruited at the University of Florida (n = 222) and the University of Arizona (n = 108). Participants underwent resting-state fMRI and completed verbal memory (Hopkins Verbal Learning Test - Revised [HVLT-R]) and visuospatial memory (Brief Visuospatial Memory Test - Revised [BVMT-R]) measures. Immediate (total) and delayed recall scores on the HVLT-R and BVMT-R were calculated using each test manual’s scoring criteria. Learning ratios on the HVLT-R and BVMT-R were quantified by dividing the number of stimuli (verbal or visuospatial) learned between the first and third trials by the number of stimuli not recalled after the first learning trial. CONN Toolbox was used to extract average within-network connectivity values for CON, FPCN, and DMN. Hierarchical regressions were conducted, controlling for sex, race, ethnicity, years of education, number of invalid scans, and scanner site.
Results:
Greater CON connectivity was significantly associated with better HVLT-R immediate (total) recall (ß = 0.16, p = 0.01), HVLT-R learning ratio (ß = 0.16, p = 0.01), BVMT-R immediate (total) recall (ß = 0.14, p = 0.02), and BVMT-R delayed recall performance (ß = 0.15, p = 0.01). Greater FPCN connectivity was associated with better BVMT-R learning ratio (ß = 0.13, p = 0.04). HVLT-R delayed recall performance was not associated with connectivity in any network, and DMN connectivity was not significantly related to any measure.
Conclusions:
Connectivity within CON demonstrated a robust relationship with different components of memory function as well across verbal and visuospatial domains. In contrast, FPCN only evidenced a relationship with visuospatial learning, and DMN was not significantly associated with memory measures. These data suggest that CON may be a valuable target in longitudinal studies of age-related memory changes, but also a possible target in future non-invasive interventions to attenuate memory decline in older adults.
Field research was conducted in 1988 and 1989 to compare effects of clethodim, fenoxaprop, haloxyfop, and sethoxydim each applied singly and sequentially at full (1X) and reduced (0.5X) rates on barnyardgrass, bearded sprangletop, and rice. A tank-mixture of propanil plus thiobencarb (2.2 + 2.2 kg ha–1) applied sequentially was included as a standard treatment. Control of barnyardgrass and bearded sprangletop was equal to that of the standard treatment both years with 1X rates of clethodim and fenoxaprop, and with 0.5X rates of clethodim, fenoxaprop, and sethoxydim each applied after propanil; rice so treated produced high grain yields. In 1988, severe rice injury occurred after the second application of clethodim at the 0.5X rate, but rice recovered. Grass control costs were reduced 57% with a single application of fenoxaprop at the 1X rate compared with the standard treatment, but net returns were not different.
Field experiments were conducted to compare efficacy of BAS 514, bromoxynil, fenoxaprop, sethoxydim, and triclopyr with standard herbicides for barnyardgrass and bearded sprangletop control in rice at four locations. Sequential applications of BAS 514 and fenoxaprop, or propanil and sethoxydim consistently controlled barnyardgrass and bearded sprangletop as well as or better than standard treatments of propanil, thiobencarb, or pendimethalin alone or combined; and rice so treated produced high yields. BAS 514 applied postemergence alone, BAS 514 applied sequentially with sethoxydim, or BAS 514 tank mixed with propanil controlled barnyardgrass but not bearded sprangletop. Bromoxynil or triclopyr tank mixed with fenoxaprop or sethoxydim antagonized activity on barnyardgrass and bearded sprangletop. Combinations of fenoxaprop with BAS 514 or propanil consistently provided barnyardgrass and bearded sprangletop control and high yields.
Growth and development of red rice (strawhull) and ‘Lemont’ and ‘Newbonnet’ rice were compared in 1987 and 1988 under noncompetitive field conditions at Stuttgart, AR. Growth and developmental differences were greater between red rice and rice than between rice cultivars. Compared to rice, red rice was taller, produced more culms m−2 and aboveground dry weight, had higher leaf area indices, and had a greater flag leaf area. Also, it had lower leaf to stem ratios late in the season, had greater crop growth rate early in the season but less late in the season, and produced a lower grain weight than rice. Compared to Newbonnet, Lemont plants were shorter at 60 d after emergence or later, produced more culms m−2, had a greater leaf area index, and produced higher grain weight than Newbonnet. Also, Lemont and Newbonnet produced comparable leaf to stem ratios, crop growth rates, and flag leaf areas.
Field experiments were conducted to investigate methods of controlling red rice (Oryza sativa L. ♯ ORYSA) in drill-seeded rice (O. sativa). Treatments included the rice cultivar ‘Mars', coated with calcium peroxide (CaO2) at 40% (w/w) and a crop protectant, R-33865 (O,O-diethyl-O-phenyl phosphorothioate) at 0.5 and 1% (v/w). Molinate (S-ethyl hexahydro-1H-azepine-1-carbothioate) at 6.7 kg ai/ha was applied preplant incorporated (ppi). The land was flooded (2.5 to 5 cm deep) after seeding with rice (100 kg/ha, 2.5 cm deep), and the water was maintained throughout the growing season. CaO2, with or without molinate, increased rice grain yield 50% and increased rice culm density fivefold above untreated rice. Molinate applied ppi controlled 96% of the red rice. Rice seed coated with only CaO2 or with CaO2 plus R-33865 at 0.5%, each combined with ppi molinate, produced 5690 and 6030 kg/ha of grain, respectively. These high yields were associated with red rice control by molinate and good stands of rice provided by O2 supplied by CaO2. R-33865 applied to rice seed at 1% (v/w) injured rice by reducing rice culm densities 41%, compared with rice without protectant.
Red rice at 20 plants m−2 was grown with two rice cultivars for 0, 40, 60, 80, 100, or 120 days after emergence. Red rice interference for 120 days after rice emergence reduced straw dry weights of Lemont and Newbonnet 58 and 34%, respectively. Grain yield of Lemont and Newbonnet was reduced 86 and 52%, respectively, by red rice interference for 120 days after emergence. Regression analyses indicated that red rice interference reduced straw dry weights of Newbonnet and Lemont 25 and 50 kg ha−1 day−1, respectively, for interference durations of 40 to 120 days after emergence. Grain yield of Newbonnet and Lemont was reduced 60 and 93 kg ha−1 day−1, respectively, for interference durations of 60 to 120 days. Negative linear relationships occurred between interference durations of red rice and plant height, panicles m−2, spikelets panicle−1, filled grains panicle−1, or panicle length of both cultivars. However, all parameters were reduced more for Lemont than for Newbonnet as interference duration increased. Head rice (whole kernels) and total milled rice yields of both cultivars were reduced by season-long red rice interference. Red rice straw dry weight and number of culms m−2 were greater when red rice was grown with Lemont than when grown with Newbonnet.
Field experiments were conducted in 1984 and 1985 at Stuttgart, AR, to investigate the interspecific and intraspecific interference of broadleaf signalgrass densities of 0, 10, 50, 100, and 150 plants/m2 with rice. In 1984, significant reductions in rice leaf area index (LAI) occurred 6 weeks after emergence with all broadleaf signalgrass densities. The first reduction in LAI occurred 8 weeks after emergence at the density of 150 plants/m2 in 1985. Densities of 50 plants/m2 or greater reduced rice dry weight 6 weeks after emergence in 1984, and the highest density of 150 plants/m2 reduced rice dry weight 12 weeks after emergence in 1985. Height of rice was reduced by densities of 100 and 150 plants/m2. Linear regression equations indicated that each broadleaf signalgrass plant/m2 reduced rough rice yield 18 kg/ha both years. Growth of broadleaf signalgrass was reduced by interspecific and intraspecific interference. The dry weight of broadleaf signalgrass increased at a decreasing rate at plant densities of 100 to 150/m2 when grown alone in 1984 and 1985, when a quadratic equation best described the response. Regression equations indicated interspecific interference from rice reduced broadleaf signalgrass dry weight an average of 48 and 81% in 1984 and 1985, respectively. The height of broadleaf signalgrass was greater when grown with rice than when grown alone.
Pot experiments were conducted in the field at Stuttgart, AR, during 1982 and 1983 to evaluate growth and morphological differences between strawhull and blackhull red rice (Oryza sativa L. ♯ ORYSA) biotypes collected from Arkansas, Louisiana, and Texas. All red rice biotypes were compared with rice (Oryza sativa L.) cultivars ‘Lebonnet’ and ‘Nortai’. Growth and morphological differences were greatest between cultivars and red rice biotypes, less between blackhull and strawhull types, and least among collections within blackhull or strawhull. Cultivars emerged slower, were shorter, tillered less, produced less straw and fewer panicles/plant, had a lower leaf area index, and had less grain shattering than most of the red rice biotypes. Blackhull red rice biotypes tillered 27% more, produced 18% more straw, and had later maturity than strawhull. Blackhull red rice from Arkansas emerged earlier, tillered 6 to 38% more, and produced 8 to 38% more panicles per plant than other red rice biotypes, whereas blackhull red rice from Texas was 11 to 26% taller at maturity than other biotypes.
Field research was conducted in 1985 and 1986 to compare the efficacy of fluazifop and quizalofop on production of panicles and seeds of red rice. Single and first sequential treatments were applied to red rice in the early-tillering, midtillering, and panicle initiation stages of growth. Sequential treatments were applied 14 days after each earlier application to red rice in the midtillering, late-tillering, and early-heading growth stages, respectively. Both herbicides were applied singly or sequentially at 70, 140, and 280 g/ha. Sequential applications of fluazifop and quizalofop at 280 g/ha caused the greatest reduction of red rice panicle and seed production. Fluazifop at 280 g/ha applied sequentially reduced panicle production 75 to 80% and seed production 80%; 140 g/ha applied sequentially reduced seed production 83%. Quizalofop at 280 g/ha applied sequentially reduced panicle production 75 to 100% and seed production 91%. Sequential applications of either herbicide applied to red rice plants in the panicle initiation and early-heading growth stages were the most effective treatments.
Effects of bearded sprangletop interference durations on Lemont and Newbonnet rice cultivars were studied. Interference durations of 63, 70, and 130 d after rice emergence reduced Lemont grain yields 11, 21, and 50%, respectively, and lowered Newbonnet grain yields 11, 13, and 37%, respectively. Interference durations of 21 to 56 d after emergence did not reduce grain yields of either cultivar. Bearded sprangletop grown in Lemont rice produced more biomass than that in Newbonnet. Season-long interference reduced plant height and straw dry weight of Lemont more than that of Newbonnet.
Experiments were conducted from 1989 to 1991 on two silt loam and two clay soils to determine the effect of herbicides applied to the previous crop on growth and yield of rice. All herbicides were applied preplant-incorporated at recommended rates adjusted as needed for soil texture. Rice was planted the following year. Imazaquin, imazethapyr, alachlor, metolachlor, clomazone, trifluralin, and atrazine did not injure rice the year following application. Norflurazon was the only herbicide to injure rice on silt loam soils, with injury at one silt loam location in one of two years. Norflurazon and fluometuron residues caused rice injury on clay soils, and chlorimuron residues caused injury in one year on a day soil. This chlorimuron carryover injury was from August-planted soybean but did not occur from June-planted soybean. Norflurazon, fluometuron, and chlorimuron temporarily reduced rice dry matter early in the season. No herbicide reduced either rough rice or percent head rice yield on any of the soils.
Two field experiments were conducted from 1986 to 1988 to determine efficacy of herbidices and plant growth regulators for red rice control and suppression in water- and drill-seeded rice. Molinate applied PPI with fenoxaprop applied at panicle initiation (PI) of rice controlled 94 and 86% of red rice in water- and drill-seeded rice, respectively, compared with 79 and 49%, respectively, for molinate PPI alone in the two cultures. Although this treatment injured rice slightly (< 30%), rice so treated produced high yields with improved grain quality. Sequential treatments of molinate PPI followed by sethoxydim applied at PI or amidochlor applied at > 90% heading produced comparable rice yields with improved red rice control or suppression and grain quality in both cultures, compared with PPI molinate. Drill-seeded rice treated with molinate PPI followed by fenoxaprop applied at late boot or MH (maleic hydazide) applied 7 d after heading produced higher yield than rice treated with molinate PPI.
Field experiments were conducted at Stuttgart, AR, from 1986 to 1988 to determine effects of season-long interference of red rice densities of 1, 2, 5, 10, 20, and 40 plants m–2 on ‘Lemont’ and ‘Newbonnet’ rice cultivars. This interference reduced straw dry weights of Newbonnet and Lemont by 100 and 130 kg ha–1 per red rice plant, and grain yields by 178 and 272 kg ha–1 per red rice plant, respectively. Grain yield reductions were due to decreases in panicle number and length, and in number of grains per panicle. Ten plants m–2 or more reduced height of Lemont, while 40 plants m−2 were required to reduce height of Newbonnet. Red rice at 10 plants m−2 or more reduced total milled and head rice yields of Lemont, but red rice did not affect these components for Newbonnet. Red rice interfered with rice, even at densities as low as two plants m−2, and interference was greater in Lemont, a semidwarf cultivar with mature plants 92 cm tall, than in Newbonnet, a conventional cultivar with mature plants 115 cm tall. Red rice produced more panicles m−2 and 31 to 64% greater straw dry weight when grown with Lemont than when grown with Newbonnet because red rice shaded Lemont more than Newbonnet. Red rice plants grew taller as red rice densities increased and also were taller when grown in Newbonnet than when grown in Lemont.
Red rice (Oryza sativa L. ♯ ORYSA) densities of 5, 108, and 215 plants/m2 reduced grain yield of commercial rice (Oryza sativa L.) 22, 77, and 82%, respectively. At a cultivated rice density of 195 plants/m2, red rice at 5, 108, and 215 plants/m2 reduced straw dry weight of cultivated rice 18, 66, and 68%, respectively. At a red rice density of 5 plants/m2, reduction in number of cultivated rice grains per panicle ranged from 8 to 18%, whereas densities of 108 and 215 plants/m2 reduced grains per panicle 56 to 70%. Red rice grain yield was 24 to 33% lower in ‘Mars' rice than in ‘Lebonnet’. Mars, a medium-grain cultivar that matures in 138 days, competed better with red rice than Lebonnet, a long-grain cultivar that matures in 126 days.
Interference from broadleaf signalgrass at a density of 180 plants/m2 reduced rough rice yields of ‘Bond’ a maximum of 48% at 95 days after rice emergence and reduced yields of ‘Mars' a maximum of 21% from season-long interference. Interference durations of 40 days or longer reduced the panicles/m2, culms/m2, and plant height of rice. Straw dry weight of Bond and Mars was reduced 41 and 26%, respectively, from season-long interference. Increased durations of weed interference did not affect the number of spikelets/panicle, percent filled spikelets, rough kernel weight, or head rice yield of either cultivar. Broadleaf signalgrass produced less dry weight and fewer panicles/m2 when grown with Mars than with Bond.
Experiments were conducted in 1985 and 1986 at three locations in eastern Arkansas to evaluate red rice control in soybeans with postemergence grass herbicides and plant growth regulators applied singly or sequentially at early to late-tillering growth stages of red rice. Haloxyfop at 0.21 kg ai/ha and quizalofop at 0.14 kg ai/ha applied singly or sequentially and fluazifop at 0.21 kg ai/ha applied sequentially consistently controlled red rice and suppressed seedhead production in soybeans. Mid-season treatments were not beneficial when high soil moisture stress conditions existed. Mefluidide or sethoxydim applied singly or sequentially or amidochlor applied singly provided erratic control and seedhead suppression of red rice in soybeans.