We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent studies of viscous dissipation mechanisms in impacting droplets have revealed distinct behaviours between the macroscale and nanoscale. However, the transition of these mechanisms from the macroscale to the nanoscale remains unexplored due to limited research at the microscale. This work addresses the gap using the many-body dissipative particle dynamics (MDPD) method. While the MDPD method omits specific atomic details, it retains crucial mesoscopic effects, making it suitable for investigating the impact dynamics at the microscale. Through the analysis of velocity contours within impacting droplets, the research identifies three primary contributors to viscous dissipation during spreading: boundary-layer viscous dissipation from shear flow; rim geometric head loss; and bulk viscous dissipation caused by droplet deformation. This prompts a re-evaluation of viscous dissipation mechanisms at both the macroscale and nanoscale. It reveals that the same three kinds of dissipation are present across all scales, differing only in their relative intensities at each scale. A model of the maximum spreading factor (βmax) incorporating all forms of viscous dissipation without adjustable parameters is developed to substantiate this insight. This model is validated against three distinct datasets representing the macroscale, microscale and nanoscale, encompassing a broad spectrum of Weber numbers, Ohnesorge numbers and contact angles. The satisfactory agreement between the model predictions and the data signifies a breakthrough in establishing a universal βmax model applicable across all scales. This model demonstrates the consistent nature of viscous dissipation mechanisms across different scales and underscores the importance of integrating microscale behaviours to understand macroscale and nanoscale phenomena.
Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown.
Methods
Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group.
Results
We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a ‘cortico-subcortical-cortical’ network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls.
Conclusions
Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
For individual cultures, findings on regulating embryo density by changing the microdrop volume are contradictory. The aim of this study was to investigate the relationship between embryo density and the developmental outcome of day 3 embryos after adjusting covariates. In total, 1196 embryos from 206 couples who had undergone in vitro fertilization treatment were analyzed retrospectively. Three embryo densities were used routinely, i.e. one embryo in a drop (30 μl/embryo), two embryos in a drop (15 μl/embryo) and three embryos in a drop (10 μl/embryo). Embryo quality on day 3 was evaluated, both the cell number of day 3 embryos and the proportion of successful implantations served as endpoints. Maternal age, paternal age, antral follicles and level of anti-Müllerian hormone, type of infertility, controlled ovarian stimulation protocol, length of stimulation, number of retrieved oocytes, number of zygotes (two pronuclei) and insemination type were covariates and adjusted. After adjusting fully for all covariates, the cell number of day 3 embryos was significantly increased by 0.40 (95% CI 0.00, 0.79; P = 0.048) and 0.78 (95% CI 0.02, 1.54; P = 0.044) in the 15 μl/embryo and 10 μl/embryo group separately, compared with the 30 μl/embryo group. The proportions of implanted embryos were 42.1%, 48.7% and 0.0% in the 30 μl/embryo, 15 μl/embryo and 10 μl/embryo groups respectively. There was no statistical significance (P = 0.22) between the 30 μl/embryo group and the 15 μl/embryo group. After adjusting for confounders that were significant in univariate analysis, embryo density was still not associated with day 3 embryo implantation potential (P > 0.05). In a 30-μl microdrop, culturing embryos with an embryo density of both 15 and 10 μl/embryo increased the cell number of day 3 embryos, which did not benefit embryo implanting potential, compared with individual culture of 30 μl/embryo.
The association between dietary Fe intake and diabetes risk remains inconsistent. We aimed to explore the association between dietary Fe intake and type 2 diabetes mellitus (T2DM) risk in middle-aged and older adults in urban China. This study used data from the Guangzhou Nutrition and Health Study, an on-going community-based prospective cohort study. Participants were recruited from 2008 to 2013 in Guangzhou community. A total of 2696 participants aged 40–75 years without T2DM at baseline were included in data analyses, with a median of 5·6 (interquartile range 4·1–5·9) years of follow-up. T2DM was identified by self-reported diagnosis, fasting glucose ≥ 7·0 mmol/l or glycosylated Hb ≥ 6·5 %. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95 % CI. We ascertained 205 incident T2DM cases during 13 476 person-years. The adjusted HR for T2DM risk in the fourth quartile of haem Fe intake was 1·92 (95 % CI 1·07, 3·46; Ptrend = 0·010), compared with the first quartile intake. These significant associations were found in haem Fe intake from total meat (HR 2·74; 95 % CI 1·22, 6·15; Ptrend = 0·011) and haem Fe intake from red meat (HR 1·86; 95 % CI 1·01, 3·44; Ptrend = 0·034), but not haem Fe intake from processed meat, poultry or fish/shellfish. The association between dietary intake of total Fe or non-haem Fe with T2DM risk had no significance. Our findings suggested that higher dietary intake of haem Fe (especially from red meat), but not total Fe or non-haem Fe, was associated with greater T2DM risk in middle-aged and older adults.
We examined whether breakfast frequency was associated with chronic inflammatory, as assessed by high-sensitivity C-reactive protein (CRP) concentration.
Design:
Cross-sectional study.
Setting:
Kailuan community, China.
Participants:
Included were 70 092 Chinese adults without CVD and cancer in 2014 with CRP concentrations <10 mg/l, when breakfast frequency was assessed via a questionnaire, and plasma CRP concentration was measured.
Results:
Breakfast frequency was associated with CRP concentration (P-trend < 0·001). The adjusted mean CRP was 1·33 mg/l (95 % CI 1·23, 1·44) for the ‘no breakfast’ group and 1·07 mg/l (95 % CI 1·0, 1·14) for the ‘breakfast everyday’ group (P-difference < 0·001), adjusting for age, sex, diet quality, total energy, obesity, education, occupation, marital status, smoking, alcohol consumption, blood pressure, sleep parameters, fasting blood glucose and lipid profiles. Consistently, the adjusted OR for CRP ≥ 1·0 mg/l and CRP ≥ 3·0 mg/l were 1·86 (95 % CI 1·73, 2·00) and 1·27 (95 % CI 1·15, 1·40), respectively, when comparing these two breakfast consumption groups (P-trend < 0·001 for both). The associations were more pronounced among older adults, relative to those who were younger (P-interaction < 0·001). Significant association between breakfast skipping and elevated CRP concentration was observed in those with poor diet quality, but not those with good diet quality.
Conclusions:
Habitually skipping breakfast is associated with elevated concentrations of CRP. Future prospective studies including repeated assessment of inflammatory biomarkers and a collection of detailed information on type and amount of breakfast foods are warranted.
The clinical characteristics of patients with COVID-19 were analysed to determine the factors influencing the prognosis and virus shedding time to facilitate early detection of disease progression. Logistic regression analysis was used to explore the relationships among prognosis, clinical characteristics and laboratory indexes. The predictive value of this model was assessed with receiver operating characteristic curve analysis, calibration and internal validation. The viral shedding duration was calculated using the Kaplan–Meier method, and the prognostic factors were analysed by univariate log-rank analysis and the Cox proportional hazards model. A retrospective study was carried out with patients with COVID-19 in Tianjin, China. A total of 185 patients were included, 27 (14.59%) of whom were severely ill at the time of discharge and three (1.6%) of whom died. Our findings demonstrate that patients with an advanced age, diabetes, a low PaO2/FiO2 value and delayed treatment should be carefully monitored for disease progression to reduce the incidence of severe disease. Hypoproteinaemia and the fever duration warrant special attention. Timely interventions in symptomatic patients and a time from symptom onset to treatment <4 days can shorten the duration of viral shedding.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
There are abundant data on secular trends in BMI; however, information on the change in subcutaneous fat is limited. The present study examined the trends in the prevalence of elevated skinfold thickness among children and adolescents over the past 19 years (1995–2014) in Shandong Province, China.
Design
Data for the study were obtained from two cross-sectional surveys of schoolchildren carried out in 1995 and 2014. Triceps and subscapular skinfold thicknesses (SFT) of all participants were measured. The sum of triceps and subscapular SFT (SSFT) was applied. Children and adolescents with SSFT above or equal to the national age- and sex-specific 85th percentile were defined as ‘high SFT’.
Setting
Shandong Province, China.
Subjects
A total of 16 917 students aged 7–18 years were included.
Results
For both boys and girls, an increasing trend in ‘high SFT’ was observed between 1995 and 2014. The overall prevalence of ‘high SFT’ increased from 10·31 % for boys and 13·40 % for girls in 1995 to 33·94 % for boys and 29·30 % for girls in 2014 (P<0·01).
Conclusions
There are more children and adolescents with very high levels of SFT. These trends describe very unfavourable changes in the body composition and should give cause for concern.
The Lorentz factor (Γ) is an important parameter related to the relativistic jet physics. We study the evolution patterns of Γ within gamma-ray burst (GRB) and active galactic nuclear jets for individual GRB 090168, GRB 140508A, and 3C 454.3. By estimating the Γ values for well-separated pulses in GRBs 090618 and 140508A with an empirical relation derived from typical GRBs, we find that the Γ evolution pattern in the two GRBs are different. The increasing-to-coasting evolution pattern of Γ in GRB 090618 likely indicates that the GRB fireball is still being accelerated in the prompt phase. The clear decrease evolution pattern of Γ in GRB 140508A suggests the deceleration of the fireball components. By deriving the Γ value through fitting their spectral energy distribution in different flares of 3C 454.3, a pattern of Γ-tracking-γ-ray flux is clearly found, likely indicating that the observed gamma-ray flares are being due to the Doppler boosting effect to the jet emission.
Interleukin (IL)-13-associated signal pathway plays an important role in schistosomiasis hepatic fibrosis. In this study we tried to investigate the effects of corilagin to ameliorate schistosomiasis hepatic fibrosis through regulating IL-13-associated signal pathway in vitro and in vivo. Cellular model was set up with hepatic stellate cells-T6 cells stimulated by rIL-13 and male Balb/c mice were infected with Schistosoma japonicum cercariaeas as animal model. Liver histological changes were observed with haematoxylin and eosin staining. Masson staining was employed to observe the change of egg granulomas. Expression of Col (collagen) and Col III were examined with Immunohistochemistry. Western bolt was employed to detect the JAK-1 and IL13Rα1 proteins. The mRNA expression of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were tested by quantitative polymerase chain reaction. As a result, less inflammatory changes were found in all corilagin groups compared with model group and praziquantel group. The mRNA levels of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were significantly decreased after corilagin intervention (P < 0·01). JAK-1 and IL-13Rα1 protein levels were also greatly decreased in the corilagin groups (P < 0·01). In conclusion, corilagin could ameliorate schistosomiasis hepatic fibrosis by down-regulating the expression of IL-13 and signal molecules in IL-13 pathway.
Ca0.98Eu0.02Al1−4δ/3Si1+δN3 (δ = 0–0.36) red-emitting phosphors were prepared by carbothermal reduction and nitridation method with stable and inexpensive CaCO3 as Ca source. Optimal nominal composition was obtained at δ = 0.18, showing intense emission peaked at 625 nm and high external quantum efficiency of 71%. The emission wave length could be successfully tuned from 630 to 606 nm with increasing δ value. Ca0.98Eu0.02Al1−4δ/3Si1+δN3 phosphors provided two coordinated environments for Eu2+ ions, resulting in two fitted Gaussian peaks. Energy transfer from Eu2+ sites in Si-rich environments to those in Si/Al-equivalent modes has been confirmed by analysis of the decay curve of each peak. The decay behaviors suggested that energy transfer effect slowed with higher δ value. Finally, warm white light was created by combining as-prepared red-emitting Ca0.98Eu0.02Al0.76Si1.18N3 and yellow-emitting YAG:Ce3+ phosphors with a blue-emitting chip, exhibiting a color rendering index Ra of 91 at a low correlated color temperature of 3500 K with a luminous efficiency of 79 lm/W.
Polycrystalline Ba8Ga16MgxGe30−x compounds were synthesized by combining solid-state reaction with spark plasma sintering (SPS) method. The structural and electronic properties of Mg-substituted Ge type-I clathrate phase Ba8Ga16MgxGe30−x (x = 1, 2, 3, 4) were investigated experimentally and theoretically. Theoretically structural and electronic properties of Ba8Ga16MgxGe30−x were calculated by first-principles method based on the density-functional theory. The results indicate a strong preference for the occupation of the 6c sites by Mg. It is found that Mg substitution for Ge can lower the melting points and bulk modulus of this system. The formation energies and the binding energies decrease with increasing Mg content, suggesting that the Mg-doped Ba8Ga16Ge30 clathrates are stable in a limited range of composition. The calculated results show that these alloys are all indirect gap semiconductors and the values of band gap increase with the increase of Mg content. All specimens exhibit the behavior of the p-type conduction, which is originated from the presence of a shallow acceptor energy level. The electrical conductivity and the room-temperature carrier mobility decrease with increasing Mg content, while the room-temperature carrier concentration increases with increasing Mg content.
This paper reviews the development of agent-based (computational) economics (ACE) from an econometrics viewpoint. The review comprises three stages, characterizing the past, the present, and the future of this development. The first two stages can be interpreted as an attempt to build the econometric foundation of ACE, and, through that, enrich its empirical content. The second stage may then invoke a reverse reflection on the possible agent-based foundation of econometrics. While ACE modeling has been applied to different branches of economics, the one, and probably the only one, which is able to provide evidence of this three-stage development is finance or financial economics. We will, therefore, focus our review only on the literature of agent-based computational finance, or, more specifically, the agent-based modeling of financial markets.
Inbreeding depression has important implications for a wide range of biological phenomena, such as inbreeding avoidance, the evolution and maintenance of sexual systems and extinction rates of small populations. Previous investigations have asked how inbreeding depression evolves in single and subdivided populations through the fixation of deleterious mutations as a result of drift, as well as through the expression of deleterious mutations segregating in a population. These studies have focused on the effects of mutation and selection at single loci, or at unlinked loci. Here, we used simulations to investigate the evolution of genetic load and inbreeding depression due to multiple partially linked loci in metapopulations. Our results indicate that the effect of linkage depends largely on the kinds of deleterious alleles involved. For weakly deleterious and partially recessive mutations, the speed of mutation accumulation at segregating loci in a random-mating subdivided population of a given structure tends to be retarded by increased recombination between adjacent loci – although the highest numbers of fixation of slightly recessive mutant alleles were for low but finite recombination rates. Although linkage had a relatively minor effect on the evolution of metapopulations unless very low values of recombination were assumed, close linkage between adjacent loci tended to enhance population structure and population turnover. Finally, within-deme inbreeding depression, between-deme inbreeding depression and heterosis generally increased with decreased recombination rates. Moreover, increased selfing reduced the effective amount of recombination, and hence the effects of tight linkage on metapopulation genetic structure were decreased with increasing selfing. In contrast, linkage had little effect on the fate of lethal and highly recessive alleles. We compare our simulation results with predictions made by models that ignore the complexities of recombination.
Low temperature bonding is desired for compatibility with back-end-of-line processing (BEOL) conditions in order not to affect the three dimensional (3D) Integrated Circuits (IC) device performance. In this paper, the aim is to demonstrate that thermocompression bonding temperature can be lowered by changing the copper (Cu) film with Cu nanowires fabricated via electrodeposition through anodized aluminum oxide (AAO) template. A comparison was done between film-to-film (Film-Film) and nanowires-to-nanowires (NWs-NWs) bonding in terms of microstructure and shear strength. Cross-sectional images captured by Focused Ion Beam (FIB) revealed good interface between NWs-NWs bonding as the nanowires had fused together. Scanning Electron Microscope (SEM) images of samples after shear test also demonstrated that there is good adhesion between the bonding layers. Results from shear tests showed an increase in shear strength of NWs-NWs bonding as compared to that of Film-Film bonding at 200 °C. In addition, NWs-NWs bonding at 300 °C achieved higher shear strength than at 200 °C. In this study, it has been shown that copper nanowires fabricated via electrodeposition through porous AAO template can be a potential method to form a bonding intermediate layer for 3D ICs.
Rotundal neurons in pigeons (Columba livia) were examined for the effects of glutamate and its agonists NMDA and AMPA, antagonists CPP and CNQX, as well as of GABA and its antagonist bicuculline, on visual and tectal stimulation-evoked responses. Glutamate applied by iontophoresis excited all 48 rotundal cells tested, and this excitation was blocked by CNQX but not by CPP in 98% of cases, with 2% of cells being blocked by either CNQX or CPP. Out of 21 cells excited by AMPA, 20 were also excited by NMDA, indicating that AMPA and NMDA receptors may coexist in most rotundal cells. Action potentials were evoked in 36 additional cells by electrical stimulation applied to the tectum and they were also blocked by CNQX but not CPP. Visual responses recorded from a further eight luminance units and 21 motion-sensitive units were also blocked by CNQX and not CPP. On the other hand, GABA inhibited visual responses as well as responses evoked by tectal stimulation. An inhibitory period following tectal stimulation was eliminated by bicuculline. Taken together, these results indicate that glutamate may be an excitatory transmitter acting predominantly through non-NMDA receptors (AMPA receptors) in tectorotundal transmission. Meanwhile, GABA may be an inhibitory transmitter in the pigeon nucleus rotundus.
Studies have demonstrated that isolated soya protein (ISP) can slow the progression of renal injury, reduce blood pressure and improve the serum lipid profile in experimental animals and human subjects. The mechanisms and components of soya responsible have not been fully established. The present study was designed to evaluate the effects of the hydrophilic supernatant fraction (SF) and the hydrophobic precipitate fraction (PF) isolated from soya protein hydrolysate on renal function, lipid metabolism and blood pressure in five-sixths nephrectomized rats. Experimental animals were subjected to a nephrectomy and allocated to four groups (180g casei/g, 180g IS/g, 100g casei/g with 80g S/g, and 100g casei/g with 80g P/g). The SF group had the most significant decreases in blood pressure and total cholesterol, as well as a significantly retarded progression of the experimentally induced renal disease, compared with the other groups. The PF group exhibited a significantly increased faecal excretion of total steroids. The serum creatinine, level of proteinuria, total cholesterol and LDL-cholesterol concentrations, and blood pressure were significantly reduced, and HDL-cholesterol was significantly increased, in the ISP and PF groups compared with the casein group, but no significant differences were observed between the ISP and PF groups. These results suggest that both soya protein hydrolysate fractions favourably affected chronic renal failure induced by a five-sixths nephrectomy, and the hydrophilic fraction of soya protein hydrolysate had the most pronounced effect on attenuating hypertension and slowing the progression of renal disease.
This study used three winter wheat (Triticum aestivum L.) genotypes (H6756, H311 and SP8581) to compare the effects of sampling time, callus induction media, differentiation media and rooting media on in vitro culture of young spikes in wheat. In all these three genotypes, the frequencies of green plantlet differentiation were high when their young spikes were cultured between the stages of protective glume primordium formation and pistil and stamen primordium formation, but low at other stages. The optimum medium for callus induction was Murashige and Skoog (MS) medium+2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). The optimum green plantlet differentiation medium was MS medium. Some abnormal plantlets regenerated from calli. When these plantlets were transferred to another differentiation medium [MS+1.0 mg/l 1-naphthaleneacetic acid (NAA)+0.2 mg/l 6-benzylaminopurine (6-BA)], shoot formation and elongation were induced. This allowed 90.91% of them to develop into normal green plantlets. The optimum rooting medium was 1/2MS+0.2 mg/l 3-Indolylacetonitrile (IAA)+80 g/l sucrose. An efficient regeneration system for young spike culture of wheat was set up based on such methods. Using this wheat-regeneration system, young spikes and immature embryos of 17 genotypes of wheat were in vitro cultured to study and compare the callus induction frequencies and green plantlet differentiation frequencies. The results of two successive years showed that in 15 out of the 17 genotypes (88.24%) the green plantlet differentiation frequencies were higher than those of immature embryos by 6.2–65.1%. These results showed that the regeneration system established in this trial for young spike culture of wheat was effective.
Clinical trials have shown that soya protein reduces the concentrations of some atherogenic lipids in subjects with normal renal function. The present study examined the effects of soya protein on serum lipid concentrations and lipoprotein metabolism in patients on hypercholesterolaemic haemodialysis. Twenty-six hypercholesterolaemic (total cholesterol ≥6·21mmol/l) patients on haemodialysis were studied in a randomized, double-blind, placebo-controlled clinical trial. After a 4-week run-in phase, the subjects were randomly assigned to two groups. Isolated soya protein or milk protein 30g was consumed daily as a beverage at breakfast or post-dialysis for 12 weeks. Soya protein substitution resulted in significant reductions in total cholesterol (17·2 (sd8·9)%), LDL-cholesterol (15·3 (sd12·5)), apo B (14·6 (sd12·1)%) and insulin (23·8 (sd18·7)%) concentrations. There were no significant changes in HDL-cholesterol or apo A-I. These results indicate that replacing part of the daily protein intake with soya protein has a beneficial effect on atherogenic lipids and favourably affects lipoprotein metabolism in hypercholesterolaemic patients undergoing haemodialysis.
P doped, intrinsic, and n doped microcrystalline silicon (μc-Si) thin films were successfully synthesized on 10×10 cm2 transparent conductive oxide (TCO) /glass substrate by using a Very High Frequency Plasma Enhanced Chemical Vapor Deposition (VHF-PECVD, 80MHz) single chamber system. The crystal fraction of p and n type μc-Si:H with a thickness of 100nm was over 70% and 80%, respectively. Intrinsic μc-Si:H was deposited at a substrate temperature of 250°C with a high deposition rate over 1 nm/s. Photo-current/dark-current ratio of intrinsic μc-Si:H was higher than 102. The optimum cell initial efficiency of μc-Si:H single junction solar cell had been achieved 7.03 % so far.