We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations.
Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science.
OBJECTIVES/GOALS: In March 2019, Duke updated recruitment guidelines and adopted an “Engagement” policy that requires patients to ‘opt-out’ of communications regarding potential research participation. This created an opportunity to evaluate recruitment for ongoing clinical studies pre and post implementation. METHODS/STUDY POPULATION: Implementation of the new policy required new training for study teams, modification to recruitment plans, and expansion of ongoing efforts to improve direct-to-patient messaging through EPIC/MyChart tools. The impact of this new policy on overall recruitment was monitored and characterized both prior to and after implementation of the policy. Customized MyChart messages have been generated for over 22 studies, with a total of 41,386 messages sent to potential participants. RESULTS/ANTICIPATED RESULTS: Only a small number of study teams have modified their recruitment plans with transition to the new policy. This may be related to lack of understanding about policy implementation, potential recruitment opportunities, required training, resource limitations, etc. However, our case study, TMIST, had an 48% improvement in average enrollment within the first 2 months of implementation, and an almost 40% improvement in recruitment efficiency. Since becoming an “opt-out” institution, 11 study teams have implemented direct-to-patient recruitment via the MyChart patient portal. One unintended consequence we’ve noted is several different study invitations to potential participants within some patient populations. DISCUSSION/SIGNIFICANCE OF IMPACT: The new policy allows study teams to engage in direct-to-patient outreach, leading to an increase in enrollment for some studies. Incorporation of direct-to-patient messaging strategies can be a cost and resource saving measure to improve recruitment. The need to recruit similar populations demonstrated that strategic, thoughtful approaches are needed.
Many individuals who sustain moderate–severe traumatic brain injuries (TBI) are poor at recognizing emotional expressions, with a greater impairment in recognizing negative (e.g., fear, disgust, sadness, and anger) than positive emotions (e.g., happiness and surprise). It has been questioned whether this “valence effect” might be an artifact of the wide use of static facial emotion stimuli (usually full-blown expressions) which differ in difficulty rather than a real consequence of brain impairment. This study aimed to investigate the valence effect in TBI, while examining emotion recognition across different intensities (low, medium, and high).
Method: Twenty-seven individuals with TBI and 28 matched control participants were tested on the Emotion Recognition Task (ERT). The TBI group was more impaired in overall emotion recognition, and less accurate recognizing negative emotions. However, examining the performance across the different intensities indicated that this difference was driven by some emotions (e.g., happiness) being much easier to recognize than others (e.g., fear and surprise). Our findings indicate that individuals with TBI have an overall deficit in facial emotion recognition, and that both people with TBI and control participants found some emotions more difficult than others. These results suggest that conventional measures of facial affect recognition that do not examine variance in the difficulty of emotions may produce erroneous conclusions about differential impairment. They also cast doubt on the notion that dissociable neural pathways underlie the recognition of positive and negative emotions, which are differentially affected by TBI and potentially other neurological or psychiatric disorders. (JINS, 2014, 20, 1–10)
Email your librarian or administrator to recommend adding this to your organisation's collection.