We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
The proton–boron ${}^{11}{\text{B}}\left( {p,\alpha } \right)2\alpha $ reaction (p-11B) is an interesting alternative to the D-T reaction ${\text{D}}\left( {{\text{T}},{\text{n}}} \right)\alpha $ for fusion energy, since the primary reaction channel is aneutronic and all reaction partners are stable isotopes. We measured the α production yield using protons in the 120–260 keV energy range impinging onto a hydrogen–boron-mixed target, and for the first time present experimental evidence of an increase of α-particle yield relative to a pure boron target. The measured enhancement factor is approximately 30%. The experiment results indicate a higher reactivity, and that may lower the condition for p-11B fusion ignition.
Escherichia albertii is an emerging foodborne enteropathogen associated with infectious diarrhoea in humans. In February 2023, an outbreak of acute gastroenteric cases was reported in a junior high school located in Hangzhou, Zhejiang province, China. Twenty-two investigated patients presented diarrhoea (22/22, 100%), abdominal pain (21/22, 95.5%), nausea (6/22, 27.3%), and vomiting (3/22, 13.6%). E. albertii strains were successfully isolated from anal swabs collected from six patients. Each isolate was classified as sequence type ST2686, harboured eae-β gene, and carried both cdtB-I and cdtB-II subtypes, being serotyped as EAOg32:EAHg4 serotype. A comprehensive whole-genome phylogenetic analysis revealed that the six isolates formed a distinct cluster, separate from other strains. These isolates exhibited minimal genetic variation, differing from one another by 0 to 1 single nucleotide polymorphism, suggesting a common origin from a single clone. To the best of our knowledge, this represented the first reported outbreak of gastroenteritis attributed to E. albertii outside of Japan on a global scale.
This study investigated the impact of diallyl disulfide (DADS) on oxidative stress induced by hydrogen peroxide (H2O2) in ovine rumen epithelial cells (RECs). Initially, the effects of DADS were evaluated on cellular reactive oxygen species (ROS) levels, antioxidant capacity in RECs were estimated. Then, RNA-seq analysis was conducted in DADS-treated and untreated cells to analyze the differential gene expression, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, the effects of DADS on Kelch-like ECH associated protein 1/the nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) signaling pathway in RECs were evaluated. Results showed that DADS remarkably enhanced superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) (P < 0.05) while reducing ROS and malonaldehyde production (P < 0.05) in H2O2-treated RECs. Transcriptomic analysis revealed that DADS might influence glutathione synthesis through cysteine and methionine metabolism, thereby affecting the transcription of genes involved in immunity and oxidative stress. The DADS treatment resulted in increased nuclear translocation of Nrf2 and upregulation of mRNA and protein levels of quinone oxidoreductase 1, heme oxygenase 1, and Nrf2. The Nrf2-specific inhibitor nullified the protective effects of DADS on malonaldehyde formation induced by H2O2 and decreased T-AOC and SOD activities. In conclusion, DADS demonstrated the ability to alleviate oxidative stress in RECs by promoting antioxidative capacity through the Keap1/Nrf2 signaling pathway.
Transit-time damping (TTD) is a process in which the magnetic mirror force – induced by the parallel gradient of magnetic field strength – interacts with resonant plasma particles in a time-varying magnetic field, leading to the collisionless damping of electromagnetic waves and the resulting energization of those particles through the perpendicular component of the electric field, $E_\perp$. In this study, we utilize the recently developed field–particle correlation technique to analyse gyrokinetic simulation data. This method enables the identification of the velocity-space structure of the TTD energy transfer rate between waves and particles during the damping of plasma turbulence. Our analysis reveals a unique bipolar pattern of energy transfer in the velocity-space characteristic of TTD. By identifying this pattern, we provide clear evidence of TTD's significant role in the damping of strong plasma turbulence. Additionally, we compare the TTD signature with that of Landau damping (LD). Although they both produce a bipolar pattern of phase-space energy density loss and gain about the parallel resonant velocity of the Alfvénic waves, they are mediated by different forces and exhibit different behaviours as the perpendicular velocity $v_\perp \to 0$. We also explore how the dominant damping mechanism varies with ion plasma beta $\beta _i$, showing that TTD dominates over LD for $\beta _i > 1$. This work deepens our understanding of the role of TTD in the damping of weakly collisional plasma turbulence and paves the way to seek the signature of TTD using in situ spacecraft observations of turbulence in space plasmas.
Innovation-driven firms must adopt an open design strategy for competitiveness. Co-design games are recommended to foster an open, equal, and collaborative culture. However, most studies focus on the West. East-Asian countries, notably China, face unique challenges due to cultural disparities and inertia. This paper explores design games in the Chinese context through a case study with traditional workshops, revealing participants' perspectives and the potential impact on cultural inertia.
Numerical simulations are carried out on the vortex-induced rotations of a freely rotatable rigid square cylinder in a two-dimensional uniform cross-flow. A range of Reynolds numbers between 40 and 150 and density ratios between 0.1 and 10 are considered. Results show eight different characteristic regimes, expanding the classification of Ryu & Iaccarino (J. Fluid Mech., vol. 813, 2017, pp. 482–507). New regimes include the transition and wavy rotation regimes; in the ${\rm \pi}$-limited oscillation regime we observe multipeak subregimes. Moment-generating mechanisms of these regimes and subregimes are further elucidated. A phenomenon related to the influence of density ratio is the tooth-like shape of the ${\rm \pi} /2$-limit oscillation regime observed in the regime map, which is explained as a result of the imbalance relation between the main frequencies of rotation response and the vortex shedding frequency. In addition, existence of multiple regimes and multistable states are discussed, indicating multiple stable attractive structures in phase space.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
To examine the effectiveness of Self-Help Plus (SH+) as an intervention for alleviating stress levels and mental health problems among healthcare workers.
Methods
This was a prospective, two-arm, unblinded, parallel-designed randomised controlled trial. Participants were recruited at all levels of medical facilities within all municipal districts of Guangzhou. Eligible participants were adult healthcare workers experiencing psychological stress (10-item Perceived Stress Scale scores of ≥15) but without serious mental health problems or active suicidal ideation. A self-help psychological intervention developed by the World Health Organization in alleviating psychological stress and preventing the development of mental health problems. The primary outcome was psychological stress, assessed at the 3-month follow-up. Secondary outcomes were depression symptoms, anxiety symptoms, insomnia, positive affect (PA) and self-kindness assessed at the 3-month follow-up.
Results
Between November 2021 and April 2022, 270 participants were enrolled and randomly assigned to either SH+ (n = 135) or the control group (n = 135). The SH+ group had significantly lower stress at the 3-month follow-up (b = −1.23, 95% CI = −2.36, −0.10, p = 0.033) compared to the control group. The interaction effect indicated that the intervention effect in reducing stress differed over time (b = −0.89, 95% CI = −1.50, −0.27, p = 0.005). Analysis of the secondary outcomes suggested that SH+ led to statistically significant improvements in most of the secondary outcomes, including depression, insomnia, PA and self-kindness.
Conclusions
This is the first known randomised controlled trial ever conducted to improve stress and mental health problems among healthcare workers experiencing psychological stress in a low-resource setting. SH+ was found to be an effective strategy for alleviating psychological stress and reducing symptoms of common mental problems. SH+ has the potential to be scaled-up as a public health strategy to reduce the burden of mental health problems in healthcare workers exposed to high levels of stress.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
Lower limb exoskeletons (LLEs) have demonstrated their potential in delivering quantified repetitive gait training for individuals afflicted with gait impairments. A critical concern in robotic gait training pertains to fostering active patient engagement, and a viable solution entails harnessing the patient’s intrinsic effort to govern the control of LLEs. To address these challenges, this study presents an innovative online gait learning approach with an appropriate control strategy for rehabilitation exoskeletons based on dynamic movement primitives (DMP) and an Assist-As-Needed (AAN) control strategy, denoted as DMP-AAN. Specifically tailored for post-stroke patients, this approach aims to acquire the gait trajectory from the unaffected leg and subsequently generate the reference gait trajectory for the affected leg, leveraging the acquired model and the patient’s personal exertion. Compared to conventional AAN methodologies, the proposed DMP-AAN approach exhibits adaptability to diverse scenarios encompassing varying gait patterns. Experimental validation has been performed using the lower limb rehabilitation exoskeleton HemiGo. The findings highlight the ability to generate suitable control efforts for LLEs with reduced human-robot interactive force, thereby enabling highly patient-controlled gait training sessions to be achieved.
Understanding user perceptions of interacting with the virtual world is one of the research focuses in recent years, given the rapid proliferation of virtual reality (VR) and driven to establish the metaverse. Users can generate a familiar connection between their bodies and the virtual world by being embodied in virtual hands, and hand representations can induce users’ embodiment in VR. The sense of embodiment represents the cognitive awareness of one's manifestation and includes three subcomponents: the sense of body ownership, agency and self-location. There is insufficient evidence in the literature about the effects of hand designs on the embodiment, especially based on studying its three subcomponents. This study investigates how virtual hand designs with five realism levels influence the three subcomponents of embodiment in VR. This research employs a self-report questionnaire commonly used in the literature to assess embodiment and evaluates agency and self-location by introducing implicit methods (intentional binding and proprioceptive measurement) derived from psychology. Besides, the objective data of eye tracking is used to explore the connection between embodiment and hand designs, and classifying participants’ eye tracking data to help analyze the link between embodiment and user attention. Overall, this research makes a major contribution through a systematic exploration of users’ embodied experience in VR and offers important evidence of the effects of virtual hand designs on body ownership, agency, and self-location, respectively. In addition, this study provides a valuable reference for further investigation of embodiment through implicit and objective methods, and practical design recommendations for virtual hand design in VR applications.
Computer-aided design (CAD) plays an essential role in creative idea generation on 2D screens during the design process. In most CAD scenarios, virtual object translation is an essential operation, and it is commonly used when designers simulate their innovative solutions. The degrees of freedom (DoF) of virtual object translation modes have been found to directly impact users’ task performance and psychological aspects in simulated environments. Little is known in the existing literature about the sense of agency (SoA), which is a critical psychological aspect emphasizing the feeling of control, in translation modes on 2D screens during the design process. Hence, this study aims to assess users’ SoA in virtual object translation modes on mouse-based, touch-based, and handheld augmented reality (AR) interfaces through subjective and objective measures, such as self-report, task performance, and electroencephalogram (EEG) data. Based on our findings in this study, users perceived a greater feeling of control in 1DoF translation mode, which may help them come up with more creative ideas, than in 3DoF translation mode in the design process; additionally, the handheld AR interface offers less control feel, which may have a negative impact on design quality and creativity, as compared with mouse- and touch-based interfaces. This research contributes to the current literature by analyzing the association between virtual object translation modes and SoA, as well as the relationship between different 2D interfaces and SoA in CAD. As a result of these findings, we propose several design considerations for virtual object translation on 2D screens, which may enable designers to perceive a desirable feeling of control during the design process.
With the dangerous and troublesome nature of hollow defects inside building structures, hollowness inspection has always been a challenge in the field of construction quality assessment. Several methods have been proposed for inspecting hollowness inside concrete structures. These methods have shown great advantages compared to manual inspection but still lack autonomy and have several limitations. In this paper, we propose a range-point migration-based non-contact hollowness inspection system with sensor fusion of ultra-wide-band radar and laser-based depth camera to extract both outer surface and inner hollowness information accurately and efficiently. The simulation result evaluates the performance of the system based on the original range-point migration algorithm, and our proposed one and the result of our system show great competitiveness. Several simulation experiments of structures that are very common in reality are carried out to draw more convincing conclusions about the system. At the same time, a set of laboratory-made concrete components were used as experimental objects for the robotic system. Although still accompanied by some problems, these experiments demonstrate the availability of an automated hollow-core detection system.
We aimed to investigate the relationship between the neutrophil to lymphocyte ratio (NLR) and nutritional parameters in chronic kidney disease (CKD) patients. In this cross-sectional study, 187 non-dialysis CKD patients were enrolled. Daily dietary energy intake (DEI) and daily dietary protein intake (DPI) were assessed by 3-d dietary records. Protein-energy wasting (PEW) was defined as Subjective Global Assessment (SGA) class B and C. Spearman correlation analysis, logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed. The median NLR was 2·51 (1·83, 3·83). Patients with CKD stage 5 had the highest NLR level. A total of 19·3 % (n 36) of patients suffered from PEW. The NLR was positively correlated with SGA and serum P, and the NLR was negatively correlated with BMI, waist and hip circumference, triceps skinfold thickness, mid-arm muscle circumference, DPI and Hb. Multivariate logistic regression analysis adjusted for DPI, DEI, serum creatinine, blood urea nitrogen, uric acid and Hb showed that a high NLR was an independent risk factor for PEW (OR = 1·393, 95 % CI 1·078, 1·800, P = 0·011). ROC analysis showed that an NLR ≥ 2·62 had the ability to identify PEW among CKD patients, with a sensitivity of 77·8 %, a specificity of 62·3 % and an AUC of 0·71 (95 % CI 0·63, 0·81, P < 0·001). The NLR was closely associated with nutritional status. NLR may be an indicator of PEW in CKD patients.
Geopolymers can be transformed into zeolites under certain synthesis conditions. However, zeolite formation is not frequently reported in KOH-activated geopolymers. This study attempted to explore zeolite synthesis through geopolymerization for a curing time of 24 h using mixed NaOH/KOH alkaline solution as an activator, and then applying the geopolymer-supported zeolites to immobilize Cd(II) in paddy soil. The K2O/M2O–H2O/SiO2 and K2O/M2O–OH–/SiO2 binary zeolite crystallization phase diagrams were obtained. Zeolite A, faujasite and sodalite formed at lower K2O/M2O molar ratios (0–0.2), ferrierite formation was favoured at a K2O/M2O molar ratio of 0.2–0.4 and zeolite K-I and zeolite F-K (both K-zeolites) were observed at a K2O/M2O molar ratio of 0.6. The geopolymer-supported zeolites had micropores and mesopores and specific surface area values of 44.2–74.8 m2 g–1. The material displayed a considerable Cd(II) immobilization efficiency (55.6–58.7% at 4–6 wt.% addition of zeolite).
To examine the associations between factors based on the social cognitive theory (SCT) and behavioral intention among doctors and nurses in China toward free and self-paid (600 RMB or US$91) severe acute respiratory coronavirus virus 2 (SARS-CoV-2) vaccination given 80% effectiveness and rare mild side effects.
Design:
Cross-sectional study.
Setting:
Public hospitals.
Participants:
The study included 362 doctors and 1,702 nurses in major departments of 5 hospitals of 3 Chinese provinces.
Methods:
An anonymous online survey was conducted from October to November 2020, facilitated by hospital administrators through online WeChat/QQ working groups. Data on outcome expectations, self-efficacy, norms, and COVID-19–related work experiences were collected. Multivariate logistic regression models were used for data analyses.
Results:
The logistic regression analysis showed that physical (eg, protective effect of vaccination) and self-evaluative outcome expectations (eg, anticipated regret), self-efficacy, norms (eg, descriptive norm, subjective norm, professional norm, and moral norm), and job satisfaction were significantly and positively associated with the free and self-paid SARS-CoV-2 vaccination intention outcomes among doctors and nurses, adjusted for background variables. Doctors who had engaged in COVID-19–related work reported higher self-paid vaccination intention.
Conclusions:
Health promotion is needed to improve the uptake of SARS-CoV-2 vaccination among healthcare workers. Such interventions may consider modifying the identified factors of vaccination intention, including strengthening perceived efficacy, positive feelings about vaccination, the need to avoid future regret, self-efficacy, and social norms. Future studies should examine the actual behavior patterns of SARS-CoV-2 vaccination, and the efficacy of promotion intervention should be tested in randomized controlled studies.
Anticipatory pleasure deficits are closely correlated with negative symptoms in schizophrenia, and may be found in both clinical and subclinical populations along the psychosis continuum. Prospection, which is an important component of anticipatory pleasure, is impaired in individuals with social anhedonia (SocAnh). In this study, we examined the neural correlates of envisioning positive future events in individuals with SocAnh.
Methods
Forty-nine individuals with SocAnh and 33 matched controls were recruited to undergo functional MRI scanning, during which they were instructed to simulate positive or neutral future episodes according to cue words. Two stages of prospection were distinguished: construction and elaboration.
Results
Reduced activation at the caudate and the precuneus when prospecting positive (v. neutral) future events was observed in individuals with SocAnh. Furthermore, compared with controls, increased functional connectivity between the caudate and the inferior occipital gyrus during positive (v. neutral) prospection was found in individuals with SocAnh. Both groups exhibited a similar pattern of brain activation for the construction v. elaboration contrast, regardless of the emotional context.
Conclusions
Our results provide further evidence on the neural mechanism of anticipatory pleasure deficits in subclinical individuals with SocAnh and suggest that altered cortico-striatal circuit may play a role in anticipatory pleasure deficits in these individuals.