We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we simulate the process of two-dimensional axisymmetric fluid–structure coupling of a droplet impacting on a flexible disk. The effects of dimensionless disk stiffness (K = 0.1–1000), Weber number (We = 1–500) and contact angle (θ = 130° and 60°) on the dynamics of the droplet impacting on the flexible disk are analysed. The results indicate that there are five typical impact modes for a hydrophobic surface (θ = 130°) and four typical impact modes for a hydrophilic surface (θ = 60°) within the range of considered parameters. The analysis of spreading factor reveals that a part of the energy is transferred to the substrate, which is manifested as a weakening of the droplet spreading, when the substrate deforms downwards due to the droplet impact; the squeezing of the droplet causes a tendency to flow from the centre of the droplet to the edge, which is manifested as an enhancement of the droplet spreading, when the substrate recovers from the downward deformation. The effect of the substrate flexibility on the maximum spreading factor depends on the competition of the two mechanisms above. Based on this, a modified scaling law of βmax has been proposed by introducing the effective Weber number (Wem). The analysis of impact force demonstrates that the peak of the impact force is related to the deflection of the flexible substrate which is different from that of a rigid wall; and three typical processes of impact force variation have been summarised. In addition, unlike the rigid substrate scenario, there is an energy interaction between the droplet and the flexible substrate after impact occurs, which is classified as three typical energy transformation processes.
This paper presents a numerical study on the flow around two tandem circular cylinders beneath a free surface at a Reynolds number of $180$. The free-surface effects on the wake dynamics and hydrodynamic forces are investigated through a parametric study, covering a parameter space of gap ratios from $0.20$ to $2.00$, spacing ratios from $1.50$ to $4.00$ and Froude numbers from $0.2$ to $0.8$. A jet-like flow accompanied by a shear layer of positive vorticity separating from the free surface is formed in the wake at small gap ratios, which significantly alters the wake pattern through its dynamic behaviours. At shallow submergence depths, the three-dimensional wake transitions from mode B to mode A as the distance between the cylinders increases. As submergence depth increases, the wavy deformation of the primary vortex cores disappears in the wake, and the flow transitions to a two-dimensional state. Higher Froude numbers can extend the effect of the free surface to deeper submergence depths. The critical spacing ratio tends to be larger at higher Froude numbers. Furthermore, the free-surface deformation is examined. The free-surface profile typically comprises a hydraulic jump immediately ahead of the upstream cylinder, trapped waves in the vicinity of the two tandem cylinders and well-defined travelling waves on the downstream side. The frequencies of the waves cluster around the vortex shedding frequency, indicating a close association between the generation of waves and the vortex shedding process.
Accurately converting satellite instantaneous evapotranspiration (λETi) over time to daily evapotranspiration (λETd) is crucial for estimating regional evapotranspiration from remote sensing satellites, which plays an important role in effective water resource management. In this study, four upscaling methods based on the principle of energy balance, including the evaporative fraction method (Eva-f method), revised evaporative fraction method (R-Eva-f method), crop coefficient method (Kc-ET0 method) and direct canopy resistance method (Direct-rc method), were validated based on the measured data of the Bowen ratio energy balance system (BREB) in maize fields in northwestern (NW) and northeastern (NE) China (semi-arid and semi-humid continental climate regions) from 2021 to 2023. Results indicated that Eva-f and R-Eva-f methods were superior to Kc-ET0 and Direct-rc methods in both climatic regions and performed better between 10:00 and 11:00, with mean absolute errors (MAE) and coefficient of efficiency (ɛ) reaching <10 W/m2 and > 0.91, respectively. Comprehensive evaluation of the optimal upscaling time using global performance indicators (GPI) showed that the Eva-f method had the highest GPI of 0.59 at 12:00 for the NW, while the R-Eva-f method had the highest GPI of 1.18 at 11:00 for the NE. As a result, the Eva-f approach is recommended as the best way for upscaling evapotranspiration in NW, with 12:00 being the ideal upscaling time. The R-Eva-f method is the optimum upscaling method for the Northeast area, with an ideal upscaling time of 11:00. The comprehensive results of this study could be useful for converting λETi to λETd.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
Antibiotic-resistant genes (ARGs) have been regarded as emerging contaminants that threaten public health worldwide. Poultry excreta, often used as a fertilizer in agriculture, are a major route for the proliferation and dissemination of ARGs in the environment. The aim of the present study was to assess the potential of dietary palygorskite (Plg) supplementation as nutritional manipulation for the modulation of microbial community structure and the attenuation of ARGs in the cecal contents of broilers fed with chlortetracycline (CTC). In total, 256 one-day-old, mixed-sex, broiler chicks were allocated randomly into a 2 × 2 factorial design of four treatments, which consisted of two levels of CTC (0 or 50 mg/kg) and Plg (0 or 10 g/kg). By employing in vivo feeding and slaughter experiments, after collecting the cecal contents and extracting the total genomic DNA, 16S rRNA V3-V4 hypervariable amplicon pyrosequencing and quantitative PCR-based approaches were used to address the impact of Plg on microbiota and the abundance of ARGs in broilers. The results showed that broilers given a diet supplemented with Plg had greater α-diversity indices including Chao1, phylogenetic diversity tree, and observed-species index calculations, when compared with those without Plg supplementation. Birds given a diet supplemented with Plg had fewer Firmicutes at the phylum level, but a greater abundance of Alistipes at the bacterial genus level. Dietary Plg counteracted the CTC-induced increased abundance of ARGs, among which tet(K) had a pronounced decrease, along with a similar decreased tendency for other measured ARGs and intI1. Overall, the results indicated that Plg supplementation caused pronounced changes in cecal microbial diversity and microbiota community composition of broilers, and effectively reduced ARGs, indicating that Plg supplementation is a potential alternative measure for the attenuation of ARGs in the cecal contents of broilers.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
The effects of magnetic vortex acceleration (MVA) are investigated with two-dimensional particle-in-cell (PIC) simulations by laser interaction with near-critical density (NCD) plasma inside a hollow conical plasma. Energetic and collimated proton beams can be accelerated by a longitudinal charge-separation field. Energetic protons with a peak energy of 220 MeV are produced in PIC simulations. Compared with a uniform NCD plasma, both the cutoff energy and collimation of proton beams are improved remarkably. Furthermore, the influence of different gap sizes of cone tip is taken into account. For optimizing magnetic vortex acceleration, the gap size of the cone tip is suggested to match the focal spot size of laser pulse.
Energy loss of protons with 90 and 100 keV energies penetrating through a hydrogen plasma target has been measured, where the electron density of the plasma is about 1016 cm−3 and the electron temperature is about 1-2 eV. It is found that the energy loss of protons in the plasma is obviously larger than that in cold gas and the experimental results based on the Bethe model calculations can be demonstrated by the variation of effective charge of protons in the hydrogen plasma. The effective charge remains 1 for 100 keV protons, while the value for 90 keV protons decreases to be about 0.92. Moreover, two empirical formulae are employed to extract the effective charge.
L subshell X-rays of 48Cd and 49In have been measured for the impact of protons with energies from 75 to 250 keV. Obviously, it is found that Lγ2 (abbreviation Lγ2,3 for 48Cd and Lγ2,3,4 for 49In) X-ray emission is enhanced in comparison with Lγ1 X-ray emission. The relative intensity ratios of Lγ2 to Lγ1 X-ray are larger than the atomic data and increase with decreasing proton energy. This is caused by the multiple ionization of outer-shell electrons. To verify this explanation, the enhancements for relative intensity ratio of Lι and Lβ2 to Lα X-ray in experiments are discussed, and the direct ionization cross sections of 4d, 5s, and 5p electrons are calculated using BEA theory.
It is now generally believed that elderly may have slightly higher dietary protein requirements than those of the young-middle-aged adults. We have previously conducted related studies by the indicator amino acid oxidation (IAAO) technique, but more research data are needed to revise the protein requirements of the elderly. The main objective was to reevaluate the dietary protein requirements of healthy Chinese adults (65–80 years) without sarcopenia by using the IAAO technique. Nine healthy adult men and seven healthy adult women participated in the study, with protein intakes ranging from 0·1 to 1·8 g/(kg·d). Diets that delivered energy at a 1·5 resting energy expenditure were isocaloric. The amounts of phenylalanine and tyrosine needed to remain constant for each protein dosage. By applying a nonlinear mixed-effects model analysis on the F13CO2 data, which revealed a breakpoint in F13CO2 in response to graded protein intakes, the mean protein requirement was calculated. The mean estimated average requirement (EAR) for healthy elderly Chinese adults without sarcopenia was determined to be 0·94 g/(kg·d). The protein recommended nutrient intake (RNI) determined using various derivation approaches ranged from 1·13 to 1·36 g/(kg·d). The EAR for Chinese adults without sarcopenia aged 65–80 years in this study is 6·8 % higher than the current recommended EAR (0·88 g/(kg·d)). The RNI derived using various derivation approaches are all greater than the current RNI (0·98 g/(kg·d)). This trial was registered with the Chinese clinical trial registry as ChiCTR2200061382.
Learning burnout refers to the behavioural states of boredom, frustration and depression that occur when students are not interested in learning behaviours but are unable to avoid them. It is influenced by learning attitudes, motivation and methods, and personality traits. Differences in language learning habits and the difficulty of learning Japanese vocabulary make students show more negative emotions when learning Japanese online and offline. Therefore, the study proposes a new way of teaching based on the perspective of industry-teaching integration to help improve the situation of learning burnout.
Subjects and Methods
This study takes Japanese language students with burnout as the research object. The subjects were divided into a teaching improvement group (regular classroom + industry-teaching integration mode) and a teaching routine group (regular teaching mode). The improvement group is a combination of Japanese language learning and social field practice projects. Data were collected on students’ burnout and emotions in the two teaching modes with the help of the Scale for the Evaluation of Mental Health (SCL-90) and the Learning Burnout Scale for University Students (LBUS).
Results
After the experimental intervention, there was a statistically significant difference in the burnout scale scores of the two groups of students (P<0.05), and the improved teaching model (regular classroom + industry-teaching integration mode) effectively alleviated the students’ burnout in Japanese language learning.
Conclusions
The teaching mode under the perspective of industry-teaching integration can effectively combine classroom teaching with professional practice, improve students’ learning burnout, and realize the regulation of their mental health.
Wind derivatives are financial instruments designed to mitigate losses caused by adverse wind conditions. With the rapid growth of wind power capacity due to efforts to reduce carbon emissions, the demand for wind derivatives to manage uncertainty in wind power production is expected to increase. However, existing wind derivative literature often assumes normally distributed wind speed, despite the presence of skewness and leptokurtosis in historical wind speed data. This paper investigates how the misspecification of wind speed models affects wind derivative prices and proposes the use of the generalized hyperbolic distribution to account for non-normality. The study develops risk-neutral approaches for pricing wind derivatives using the conditional Esscher transform, which can accommodate stochastic processes with any distribution, provided the moment-generating function exists. The analysis demonstrates that model risk varies depending on the choice of the underlying index and the derivative’s payoff structure. Therefore, caution should be exercised when choosing wind speed models. Essentially, model risk cannot be ignored in pricing wind speed derivatives.
The association between dietary Cu intake and mortality risk remains uncertain. We aimed to investigate the relationship of dietary Cu intake with all-cause mortality among Chinese adults. A total of 17 310 participants from the China Health and Nutrition Survey, a national ongoing open cohort of Chinese participants, were included in the analysis. Dietary intake was measured by three consecutive 24-h dietary recalls in combination with a weighing inventory over the same 3 d. The average intakes of the 3-d dietary macronutrients and micronutrients were calculated. The study outcome was all-cause mortality. During a median follow-up of 9·0 years, 1324 (7·6 %) participants died. After adjusting for sex, age, BMI, ever alcohol drinking, ever smoking, education levels, occupations, urban or rural residents, systolic blood pressure, diastolic blood pressure and the intakes of fat, protein and carbohydrate, the association between dietary Cu intake and all-cause mortality followed a J-shape (Pfor nonlinearity = 0·047). When dietary Cu intake was assessed as quartiles, compared with those in the first quartile (<1·60 mg/d), the adjusted hazard ratios for all-cause mortality were 0·87 (95 % CI (0·71, 1·07)), 0·98 (95 % CI (0·79, 1·21)) and 1·49 (95 % CI (1·19, 1·86)), respectively, in participants in the second (1·60–<1·83 mg/d), third (1·83–<2·09 mg/d) and fourth (≥2·09 mg/d) quartiles. A series of subgroup analyses and sensitivity analyses showed similar results. Overall, our findings emphasised the importance of maintaining optimal dietary Cu intake levels for prevention of premature death.
There has been a growing interest among pension plan sponsors in envisioning how the mortality experience of their active and deferred members may turn out to be if a pandemic similar to the COVID-19 occurs in the future. To address their needs, we propose in this paper a stochastic model for simulating future mortality scenarios with COVID-alike effects. The proposed model encompasses three parameter levels. The first level includes parameters that capture the long-term pattern of mortality, whereas the second level contains parameters that gauge the excess age-specific mortality due to COVID-19. Parameters in the first and second levels are estimated using penalised quasi-likelihood maximisation method which was proposed for generalised linear mixed models. Finally, the third level includes parameters that draw on expert opinions concerning, for example, how likely a COVID-alike pandemic will occur in the future. We illustrate our proposed model with data from the United States and a range of expert opinions.
The genus Echinochloa constitutes some of the most prominent weed species found in rice (Oryza sativa L.) production worldwide. The taxonomy of Echinochloa is complex due to its morphological variations. The morphophysiological diversity and taxonomic characteristics of Echinochloa ecotypes infesting rice fields in Texas are unknown. A total of 54 Echinochloa ecotypes collected during late-season field surveys in 2015 and 2016 were characterized in a common garden in 2017. Plants were characterized for 14 morphophysiological traits, including stem angle; stem color; plant height; leaf color; leaf texture; flag leaf length, width, and angle; days to flowering; panicle length; plant biomass; seed shattering; seed yield; and seed dormancy. Principal component analysis indicated that 4 (plant height, flag leaf length, seed shattering, and seed germination) of the 14 phenological traits characterized here had significantly contributed to the overall morphological diversity of Echinochloa spp. Results showed wide interpopulation diversity for the measured traits among the E. colona ecotypes, as well as diverse intrapopulation variability in all three Echinochloa species studied, including barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.], junglerice [Echinochloa colona (L.) Link], and rough barnyardgrass [Echinochloa muricata (P. Beauv.) Fernald]. Taxonomical classification revealed that the collection consisted of three Echinochloa species, with E. colona being the most dominant (96%), followed by E. crus-galli (2%), and E. muricata (2%). Correlation analysis of morphophysiological traits and resistance status to commonly used preemergence (clomazone, quinclorac) and postemergence herbicides (propanil, quinclorac, imazethapyr, and fenoxaprop-ethyl) failed to show any significant association. Findings from this study provided novel insights into the morphophysiological characteristics of Echinochloa ecotypes in rice production in Texas. The morphological diversity currently present in Echinochloa ecotypes could contribute to their adaptation to selection pressure imposed by different management tools, emphasizing the need for a diversified management approach to effectively control this weed species.