We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A high-order finite difference scheme has been developed to approximate the spatial derivative terms present in the unsteady Poisson-Nernst-Planck (PNP) equations and incompressible Navier-Stokes (NS) equations. Near the wall the sharp solution profiles are resolved by using the combined compact difference (CCD) scheme developed in five-point stencil. This CCD scheme has a sixth-order accuracy for the second-order derivative terms while a seventh-order accuracy for the first-order derivative terms. PNP-NS equations have been also transformed to the curvilinear coordinate system to study the effects of channel shapes on the development of electroos-motic flow. In this study, the developed scheme has been analyzed rigorously through the modified equation analysis. In addition, the developed method has been computationally verified through four problems which are amenable to their own exact solutions. The electroosmotic flow details in planar and wavy channels have been explored with the emphasis on the formation of Coulomb force. Significance of different forces resulting from the pressure gradient, diffusion and Coulomb origins on the convective electroosmotic flow motion is also investigated in detail.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.