We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many cardiovascular diseases occur due to an abnormal functioning of the heart. A diseased heart leads to severe complications and in some cases death of an individual. The medical community believes that early diagnosis and treatment of heart diseases can be controlled by referring to numerical simulations of image-based heart models. Computational fluid dynamics (CFD) is a commonly used tool for patient-specific simulations in cardiac flows, and it can be equipped to allow a better understanding of flow patterns. In this paper, we review the progress of CFD tools to understand the flow patterns in healthy and dilated cardiomyopathic (DCM) left ventricles (LVs). The formation of an asymmetric vortex in a healthy LV shows an efficient means of blood transport. The vortex pattern changes before any change in the geometry of LVs is noticeable. This flow change can be used as a marker of DCM progression. We can conclude that the vortex dynamics in LVs can be understood using the widely used vortex index, the vortex formation number (VFN). The VFN coupled with data-driven approaches can be used as an early diagnosis tool and leads to improvement in DCM treatment.
Accelerating COVID-19 Treatment Interventions and Vaccines (ACTIV) was initiated by the US government to rapidly develop and test vaccines and therapeutics against COVID-19 in 2020. The ACTIV Therapeutics-Clinical Working Group selected ACTIV trial teams and clinical networks to expeditiously develop and launch master protocols based on therapeutic targets and patient populations. The suite of clinical trials was designed to collectively inform therapeutic care for COVID-19 outpatient, inpatient, and intensive care populations globally. In this report, we highlight challenges, strategies, and solutions around clinical protocol development and regulatory approval to document our experience and propose plans for future similar healthcare emergencies.
With type 2 diabetes presenting at younger ages, there is a growing need to identify biomarkers of future glucose intolerance. A high (20%) prevalence of glucose intolerance at 18 years was seen in women from the Pune Maternal Nutrition Study (PMNS) birth cohort. We investigated the potential of circulating microRNAs in risk stratification for future pre-diabetes in these women. Here, we provide preliminary longitudinal analyses of circulating microRNAs in normal glucose tolerant (NGT@18y, N = 10) and glucose intolerant (N = 8) women (ADA criteria) at 6, 12 and 17 years of their age using discovery analysis (OpenArray™ platform). Machine-learning workflows involving Lasso with bootstrapping/leave-one-out cross-validation identified microRNAs associated with glucose intolerance at 18 years of age. Several microRNAs, including miR-212-3p, miR-30e-3p and miR-638, stratified glucose-intolerant women from NGT at childhood. Our results suggest that circulating microRNAs, longitudinally assessed over 17 years of life, are dynamic biomarkers associated with and predictive of pre-diabetes at 18 years of age. Validation of these findings in males and remaining participants from the PMNS birth cohort will provide a unique opportunity to study novel epigenetic mechanisms in the life-course progression of glucose intolerance and enhance current clinical risk prediction of pre-diabetes and progression to type 2 diabetes.
This empirical study aims to characterize the dynamical behaviour of sprays using time-series analysis of the size–velocity data acquired using a phase Doppler particle analyser. The prime motivation of this analysis is to capture the spatio-temporal correlations using time-series modelling paradigms that provide valuable new insights into spray dynamics. As a first step, we study long-held assumptions, especially on stationarity and time unsteadiness. We show that air-blast sprays have increased drop size as well as velocity ordering near the edge of the spray. Analysis of the inter-particle time of the droplets shows non-Poisson behaviour where droplets that are closely spaced in time are also closely spaced in the size and velocity coordinates. Temporal auto-correlation and partial auto-correlation calculations reveal the presence of inherent correlated features in the spray. This correlation is stronger and short lived in an air-blast spray and weaker but more persistent in a pressure swirl spray. These correlations render the probability density function (p.d.f.) estimate obtained from standard methods inaccurate; therefore, we propose a technically correct way of estimating the p.d.f. using a suitable downsampling and averaging method. Statistical analysis of residuals (from appropriate autoregressive integrated moving average time-series models) uncovers an interesting feature of spray data pertaining to heteroskedasticity (stochastically changing variance) of the diameter series. In order to account for heteroskedasticity, appropriate generalized autoregressive conditional heteroskedasticity models are developed. Finally, we present a utilitarian view of these results as an empirically consistent boundary condition implementation tool for computational fluid dynamics (CFD).
After five positive randomized controlled trials showed benefit of mechanical thrombectomy in the management of acute ischemic stroke with emergent large-vessel occlusion, a multi-society meeting was organized during the 17th Congress of the World Federation of Interventional and Therapeutic Neuroradiology in October 2017 in Budapest, Hungary. This multi-society meeting was dedicated to establish standards of practice in acute ischemic stroke intervention aiming for a consensus on the minimum requirements for centers providing such treatment. In an ideal situation, all patients would be treated at a center offering a full spectrum of neuroendovascular care (a level 1 center). However, for geographical reasons, some patients are unable to reach such a center in a reasonable period of time. With this in mind, the group paid special attention to define recommendations on the prerequisites of organizing stroke centers providing medical thrombectomy for acute ischemic stroke, but not for other neurovascular diseases (level 2 centers). Finally, some centers will have a stroke unit and offer intravenous thrombolysis, but not any endovascular stroke therapy (level 3 centers). Together, these level 1, 2, and 3 centers form a complete stroke system of care. The multi-society group provides recommendations and a framework for the development of medical thrombectomy services worldwide.
Grewia tenax locally known as ‘Gangerun’, is an important multipurpose underutilized shrub and potentially threaten species of the Thar Desert of India. Owing to its importance, naturally available germplasm was collected and evaluated for its sustainable utilization in future. Data on individual mother plant, seed characters and soil profile were investigated. Habitat occurrence of G. tenax was found in patches with dominant association of Euphorbia caducifolia across the four districts of western Rajasthan. Individual plant on unprotected area portrayed far lower average height (0.95 m) and canopy area (1.75 m2) than protected area (2.63 m and 13.89 m2) signifying level of browsing pressure on this species in Jaisalmer. Soil samples belonging to Pali region have high organic carbon and low electrical conductivity content than Jaisalmer and Jodhpur. The statistical analysis of seed characters revealed the presence of high coefficient of variation (%) in 100-seed weight (HSW; 27.36) followed by seed length (SL; 8.06) and least in seed breadth (SB; 5.85). The range and mean values of HSW, SL, SB and length:breadth ratio (LBR) were (2.02–7.00 and 3.34 g), (4.36–6.15 and 5.36 mm), (3.73–4.68 and 4.25 mm) and (1.11–1.44 and 1.27), respectively. Significantly positive correlation was observed between SL and LBR (0.73) followed by HSW and SL (0.66). Along with these findings, its economic importance, utilization and conservation are detailed in this paper as to hasten further research on its various aspects for its successful conservation and utilization.
We investigated the occurrence and status of the leaf folder Cnaphalocrocis ruralis (Walker) (Lepidoptera: Crambidae) in accessions of Erianthus spp. maintained as a part of the world germplasm collection at the Research Center of ICAR-Sugarcane Breeding Institute, Kannur, Kerala State, India. The nature, pattern, extent and year-to-year variation in damage were examined and accessions categorized based on relative incidence. The larvae of C. ruralis caused characteristic injury by feeding on chlorophyll bearing tissues leading to the formation of white and transparent streaks on the leaf blade. The grown-up larvae folded the leaf longitudinally with the adaxial surface inside the fold and exposing the abaxial surface, the edges being held in place by bands of silk thread at regular intervals. The length of leaf folds varied from 2.6 to 27.0 cm with a mean of 9.1 cm, which roughly constituted 7.3% of the mean length of the leaf blade. Leaf length, leaf width and leaf area were not correlated with either the leaf fold length or the number of webs. However, the leaf fold length was positively correlated with the number of webs. Attack rates (infestation rate) on cane basis (up to 69.0%) were generally higher than the damage rates (intensity) on leaf basis (up to 50.0%); infestation index ranged between 0.0 and 13.7%. Correlations between infestation rate and intensity varied among the three study years. Non-parametric analysis indicated significant differences among the three years for percent of infested canes and infestation index but not percent of damaged leaves. All accessions showed C. ruralis incidence in at least one experimental year, indicating that none of the accessions tested was immune to its attack. When all 74 accessions were considered on the basis of infestation index, 85.1% were placed in low and moderate categories and only 14.9% in high incidence category. Within the accessions of Erianthus spp., leaf area was not related to infestation rate of cane or damage rate of leaves but positively related to infestation index. The dynamics of the leaf folder in the predominantly paddy ecosystem were discussed in the light of its first occurrence in Erianthus spp. accessions in India and the world.
It is well known that bacteria, such as Escherichia coli, propel themselves in aqueous media by rotating helically shaped flagella. While a number of theoretical approaches have been proposed to model the detailed swimming motion, a rigorous comparison with experimental data is lacking due to the difficulty in simultaneously visualizing the motion of the head and the flagella along with the resulting trajectory. To this end, we have built a macroscopic working model of a bacterium and visualized its detailed motion in high-viscosity liquid. We show that a small asymmetry in the mass distribution in the head can lead to helical trajectories with large pitch and radius, which are reminiscent of the wiggling trajectories observed for swimming bacteria. The detailed motion agrees well with the predictions from slender-body theory that accounts for the asymmetric mass distribution in the head. Our study shows that the trajectory consists of two helical trajectories of different length scales – a large one caused by the asymmetric mass distribution and set by the head rotation rate, and a smaller one caused by the rotating flagellum and set by its rotation rate. We discuss implications of these results on the wiggling trajectories of swimming bacteria.
Deciphering the relative importance of genetic and environmental factors, which play a major role in the prevalence of early childhood caries (ECC), can help clinicians with planning a long-term preventive treatment. The objective of the study was to determine the prevalence and heritability of ECC among monozygotic (MZ) and dizygotic (DZ) twins in Chennai, India, in the year 2013. A cross-sectional study was designed to estimate the prevalence of ECC among twins. Zygosity classification for the survey framework was adapted from a highly accurate parental report questionnaire pertaining to the physical similarity between twins. The associated heritability index was estimated. The Decayed, Missing, Filled Surface (DMFS) Index was used as the diagnostic criterion for dental caries. The prevalence of ECC was estimated at 18.7%. The correlation coefficient between the twin pair showed significant correlation. The heritability index for ECC was estimated at 15% higher prevalence of ECC found among children in the age group 25–36 months. The heritability estimate indicated a relatively low genetic influence for early childhood caries among twins. There was no significant difference detected in the concordance rate for the MZ and DZ twins. Further research could be directed toward the prevalence of ECC among higher age group children to explore the role of genetic and environmental factors.
Mucuna pruriens (L.) DC is a tropical legume cover crop with promising nutritional and agronomic potentials. It is also a key source of 3,4 dihydroxy-L-phenylalanine (L-Dopa) – a precursor of dopamine used in the treatment of Parkinson's disease. However, lack of well-characterized germplasm plus poor accessibility to genomic resources has hindered its breeding programs. Furthermore, the cause and effect of various biotic and abiotic stresses impacting yield is also little studied. Systematic collection and evaluation of Indian germplasm by our group revealed presence of a diverse gene pool in India that can support a variety of breeding needs. The stability of L-Dopa trait across environments examined through Genotype and environment (G × E) interaction studies, as well as feasibility check on barcoding and phylogenetic analyses based on karyotype and conserved nuclear and chloroplast genes showed promising outcome. Germplasm screening for select biotic abiotic stresses identified resilient genotypes. Advances in use of DNA markers for diversity analysis, linkage map development, tagging of genes/quantitative trait loci for qualitative and quantitative traits, and progress in genomics are presented.
Direct numerical simulation (DNS) and dynamic mode decomposition (DMD) are used to study the shear layer characteristics of a jet in a crossflow. Experimental observations by Megerian et al. (J. Fluid Mech., vol. 593, 2007, pp. 93–129) at velocity ratios ($R=\overline{v}_{j}/u_{\infty }$) of 2 and 4 and Reynolds number ($Re=\overline{v}_{j}D/{\it\nu}$) of 2000 on the transition from absolute to convective instability of the upstream shear layer are reproduced. Point velocity spectra at different points along the shear layer show excellent agreement with experiments. The same frequency ($St=0.65$) is dominant along the length of the shear layer for $R=2$, whereas the dominant frequencies change along the shear layer for $R=4$. DMD of the full three-dimensional flow field is able to reproduce the dominant frequencies observed from DNS and shows that the shear layer modes are dominant for both the conditions simulated. The spatial modes obtained from DMD are used to study the nature of the shear layer instability. It is found that a counter-current mixing layer is obtained in the upstream shear layer. The corresponding mixing velocity ratio is obtained, and seen to delineate the two regimes of absolute or convective instability. The effect of the nozzle is evaluated by performing simulations without the nozzle while requiring the jet to have the same inlet velocity profile as that obtained at the nozzle exit in the simulations including the nozzle. The shear layer spectra show good agreement with the simulations including the nozzle. The effect of shear layer thickness is studied at a velocity ratio of 2 based on peak and mean jet velocity. The dominant frequencies and spatial shear layer modes from DNS/DMD are significantly altered by the jet exit velocity profile.
Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago & Dutton (J. Propul. Power, vol. 13 (2), 1997, pp. 264–273) and Beresh et al. (AIAA J., vol. 43, 2005a, pp. 379–389), respectively. The simulations successfully reproduce experimentally observed shock systems and vortical structures. The time averaged flow fields are compared to the experimental results, and good agreement is observed. The behaviour of the flow is discussed, and the similarities and differences between the two regimes are studied. The trajectory of the transverse jet is investigated. A modification to Schetz et al.’s theory is proposed (Schetz & Billig, J. Spacecr. Rockets, vol. 3, 1996, pp. 1658–1665), which yields good prediction of the jet trajectories in the current simulations in the near field. Point spectra taken at various locations in the flowfield indicate a global oscillation for the sonic jet flow, wherein different regions in the flow oscillate with a frequency of $St=fD/u_{\infty }=0.3$. For supersonic jet flow, no such global frequency is observed. Dynamic mode decomposition of the three-dimensional pressure field obtained from LES is performed and shows the same behaviour. The DMD results indicate that the $St=0.3$ mode is dominant between the upstream barrel shock and the bow shock for the sonic jet, while the roll up of the upstream shear layer is dominant for the supersonic jet.
A recent theory (Tirumkudulu & Paramati, Phys. Fluids, vol. 25, 2013, 102107) for a radially expanding liquid sheet, that accounts for liquid inertia, interfacial tension and thinning of the liquid sheet while ignoring the inertia of the surrounding gas and viscous effects, shows that such a sheet is convectively unstable to small sinuous disturbances at all frequencies and Weber numbers $(We\equiv {\it\rho}_{l}U^{2}h/{\it\sigma})$. Here, ${\it\rho}_{l}$ and ${\it\sigma}$ are the density and surface tension of the liquid, respectively, $U$ is the speed of the liquid jet, and $h$ is the local sheet thickness. In this study we use a simple non-contact optical technique based on laser-induced fluorescence (LIF) to measure the instantaneous local sheet thickness and displacement of a circular sheet produced by head-on impingement of two laminar jets. When the impingement point is disturbed via acoustic forcing, sinuous waves produced close to the impingement point travel radially outwards. The phase speed of the sinuous wave decreases while the amplitude grows as they propagate radially outwards. Our experimental technique was unable to detect thickness modulations in the presence of forcing, suggesting that the modulations could be smaller than the resolution of our experimental technique. The measured phase speed of the sinuous wave envelope matches with theoretical predictions while there is a qualitative agreement in the case of spatial growth. We show that there is a range of frequencies over which the sheet is unstable due to both aerodynamic interaction and thinning effects, while outside this range, thinning effects dominate. These results imply that a full theory that describes the dynamics of a radially expanding liquid sheet should account for both effects.
This text provides an up-to-date description of the photovoltaic (PV) components and systems. It contains detailed information on several carefully planned experiments on solar PV cells and modules. The book is divided into two sections: User Manual and Experiments. The experiments are related to the characterization and simulation of solar cells to allow the users to measure various kinds of data on solar cells, modules and PV systems. The simulation experiments would enable the users to simulate solar cells and circuits containing solar cells. The Manual provides an intuitive grasp of PV system components and their behaviour in the field through a discussion of the underlying objectives, expected outcome, theory, equipment used, measurement methodology and results. The Manual will help users in understanding and execution of various experiments related to solar PV.
This book would be an extremely useful reference manual not only for the technicians and system installers working in the PV field, but also for the students and researchers interested in understanding the fundamental aspects of PV system components and their interconnection.
Direct numerical simulation (DNS) is used to study laminar to turbulent transition induced by a discrete hemispherical roughness element in a high-speed laminar boundary layer. The simulations are performed under conditions matching the experiments of Danehy et al. (AIAA Paper 2009–394, 2009) for free-stream Mach numbers of 3.37, 5.26 and 8.23. It is observed that the Mach 8.23 flow remains laminar downstream of the roughness, while the lower Mach numbers undergo transition. The Mach 3.37 flow undergoes transition closer to the bump when compared with Mach 5.26, in agreement with experimental observations. Transition is accompanied by an increase in ${C}_{f} $ and ${C}_{h} $ (Stanton number). Even for the case that did not undergo transition (Mach 8.23), streamwise vortices induced by the roughness cause a significant rise in ${C}_{f} $ until 20$D$ downstream. The mean van Driest transformed velocity and Reynolds stress for Mach 3.37 and 5.26 show good agreement with available data. Temporal spectra of pressure for Mach 3.37 show that frequencies in the range of 10–1000 kHz are dominant. The transition process involves the following key elements: upon interaction with the roughness element, the boundary layer separates to form a series of spanwise vortices upstream of the roughness and a separation shear layer. The system of spanwise vortices wrap around the roughness element in the form of horseshoe/necklace vortices to yield a system of counter-rotating streamwise vortices downstream of the element. These vortices are located beneath the separation shear layer and perturb it, which results in the formation of trains of hairpin-shaped vortices further downstream of the roughness for the cases that undergo transition. These hairpins spread in the span with increasing downstream distance and the flow increasingly resembles a fully developed turbulent boundary layer. A local Reynolds number based on the wall properties is seen to correlate with the onset of transition for the cases considered.
Chetan S. Solanki, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Brij M. Arora, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Juzer Vasi, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Mahesh B. Patil, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India
Chetan S. Solanki, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Brij M. Arora, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Juzer Vasi, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Mahesh B. Patil, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India
Chetan S. Solanki, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Brij M. Arora, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Juzer Vasi, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Mahesh B. Patil, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India
Chetan S. Solanki, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Brij M. Arora, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Juzer Vasi, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Mahesh B. Patil, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India
Chetan S. Solanki, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Brij M. Arora, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Juzer Vasi, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India,Mahesh B. Patil, Professor, Department of Electrical Engineering, Indian Institute of Technology Bombay, India