We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
To determine the incidence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare personnel (HCP) and to assess occupational risks for SARS-CoV-2 infection.
Design:
Prospective cohort of healthcare personnel (HCP) followed for 6 months from May through December 2020.
Setting:
Large academic healthcare system including 4 hospitals and affiliated clinics in Atlanta, Georgia.
Participants:
HCP, including those with and without direct patient-care activities, working during the coronavirus disease 2019 (COVID-19) pandemic.
Methods:
Incident SARS-CoV-2 infections were determined through serologic testing for SARS-CoV-2 IgG at enrollment, at 3 months, and at 6 months. HCP completed monthly surveys regarding occupational activities. Multivariable logistic regression was used to identify occupational factors that increased the risk of SARS-CoV-2 infection.
Results:
Of the 304 evaluable HCP that were seronegative at enrollment, 26 (9%) seroconverted for SARS-CoV-2 IgG by 6 months. Overall, 219 participants (73%) self-identified as White race, 119 (40%) were nurses, and 121 (40%) worked on inpatient medical-surgical floors. In a multivariable analysis, HCP who identified as Black race were more likely to seroconvert than HCP who identified as White (odds ratio, 4.5; 95% confidence interval, 1.3–14.2). Increased risk for SARS-CoV-2 infection was not identified for any occupational activity, including spending >50% of a typical shift at a patient’s bedside, working in a COVID-19 unit, or performing or being present for aerosol-generating procedures (AGPs).
Conclusions:
In our study cohort of HCP working in an academic healthcare system, <10% had evidence of SARS-CoV-2 infection over 6 months. No specific occupational activities were identified as increasing risk for SARS-CoV-2 infection.
This study investigated the audiometric and sound localisation results in patients with conductive hearing loss after bilateral Bonebridge implantation.
Method
Eight patients with congenital microtia and atresia supplied with bilateral Bonebridge devices were enrolled in this study. Hearing tests and sound localisation were tested under unaided, unilateral and bilateral aided conditions.
Results
Mean functional gain was higher with a bilateral fitting than with a unilateral fitting, especially at 1.0–4.0 kHz (p < 0.05, both). The improvement in speech reception threshold in noise with a bilateral fitting was a 2.3 dB higher signal-to-noise ratio compared with unilateral fitting (p < 0.05). Bilateral fitting had better sound localisation than unilateral fitting (p <0.001). Four participants who attended follow up showed improved sound localisation ability after one year.
Conclusion
Patients demonstrated better hearing threshold, speech reception thresholds in noise and directional hearing with bilateral Bonebridge devices than with a unilateral Bonebridge device. Sound localisation ability with bilateral Bonebridge devices can be improved through long-term training.
The commercial Computational Fluid Dynamics (CFD) software STAR-CCM+ was used to simulate the flow and breakup characteristics of a Liquid Jet Injected into the gaseous Crossflow (LJIC) under real engine operating conditions. The reasonable calculation domain geometry and flow boundary conditions were obtained based on a civil aviation engine performance model similar to the Leap-1B engine which was developed using the GasTurb software and the preliminary design results of its low-emission combustor. The Volume of Fluid (VOF) model was applied to simulate the breakup feature of the near field of LJIC. The numerical method was validated and calibrated through comparison with the public test data at atmospheric conditions. The results showed that the numerical method can capture most of the jet breakup structure and predict the jet trajectory with an error not exceeding ±5%. The verified numerical method was applied to simulate the breakup of LJIC at the real engine operating condition. The breakup mode of LJIC was shown to be surface shear breakup at elevated condition. The trajectory of the liquid jet showed good agreement with Ragucci’s empirical correlation.
Among 353 healthcare personnel in a longitudinal cohort in 4 hospitals in Atlanta, Georgia (May–June 2020), 23 (6.5%) had severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies. Spending >50% of a typical shift at the bedside (OR, 3.4; 95% CI, 1.2–10.5) and black race (OR, 8.4; 95% CI, 2.7–27.4) were associated with SARS-CoV-2 seropositivity.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$ T), compact ($R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of $H_{98,y2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$ keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
Experimental and simulation data [Moreau et al., Plasma Phys. Control. Fusion 62, 014013 (2019); Kaymak et al., Phys. Rev. Lett. 117, 035004 (2016)] indicate that self-generated magnetic fields play an important role in enhancing the flux and energy of relativistic electrons accelerated by ultra-intense laser pulse irradiation with nanostructured arrays. A fully relativistic analytical model for the generation of the magnetic field based on electron magneto-hydrodynamic description is presented here. The analytical model shows that this self-generated magnetic field originates in the nonparallel density gradient and fast electron current at the interfaces of a nanolayered target. A general formula for the self-generated magnetic field is found, which closely agrees with the simulation scaling over the relevant intensity range. The result is beneficial to the experimental designs for the interaction of the laser pulse with the nanostructured arrays to improve laser-to-electron energy coupling and the quality of forward hot electrons.
Although numerous studies have investigated the individual effects of salinity, irrigation and fertilization on soil microbial communities, relatively less attention has been paid to their combined influences, especially using molecular techniques. Based on the field of orthogonal designed test and deoxyribonucleic acid sequencing technology, the effects of saline water irrigation amount, salinity level of irrigation water and nitrogen (N) fertilizer rate on soil bacterial community structure were investigated. The results showed that the irrigation amount was the most dominant factor in determining the bacterial richness and diversity, followed by the irrigation water salinity and N fertilizer rate. The values of Chao1 estimator, abundance-based coverage estimator and Shannon indices decreased with an increase in irrigation amount while increased and then decreased with an increase in irrigation water salinity and N fertilizer rate. The highest soil bacterial richness and diversity were obtained under the least irrigation amount (25 mm), medium irrigation water salinity (4.75 dS/m) and medium N fertilizer rate (350 kg/ha). However, different bacterial phyla were found to respond distinctively to these three factors: irrigation amount significantly affected the relative abundances of Proteobacteria and Chloroflexi; irrigation water salinity mostly affected the members of Actinobacteria, Gemmatimonadetes and Acidobacteria; and N fertilizer rate mainly influenced the Bacteroidetes' abundance. The results presented here revealed that the assessment of soil microbial processes under combined irrigation and fertilization treatments needed to be more careful as more variable consequences would be established by comparing with the influences based on an individual factor, such as irrigation amount or N fertilizer rate.
The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.
Antibiotic-resistant organism (ARO) colonization rates in skilled nursing facilities (NFs) are high; hand hygiene is crucial to interrupt transmission. We aimed to determine factors associated with hand hygiene adherence in NFs and to assess rates of ARO acquisition among healthcare personnel (HCP).
Methods:
HCP were observed during routine care at 6 NFs. We recorded hand hygiene adherence, glove use, activities, and time in room. HCP hands were cultured before and after patient care; patients and high-touch surfaces were cultured. HCP activities were categorized as high-versus low-risk for self-contamination. Multivariable regression was performed to identify predictors of hand hygiene adherence.
Results:
We recorded 385 HCP observations and paired them with cultures performed before and after patient care. Hand hygiene adherence occurred in 96 of 352 observations (27.3%) before patient care and 165 of 358 observations (46.1%) after patient care. Gloves were worn in 169 of 376 observations (44.9%). Higher adherence was associated with glove use before patient care (odds ratio [OR], 2.55; 95% confidence interval [CI], 1.44–4.54) and after patient care (OR, 3.11; 95% CI, 1.77–5.48). Compared with nurses, certified nurse assistants had lower hand hygiene adherence (OR, 0.31; 95% CI, 0.15–0.67) before patient care and physical/occupational therapists (OR, 0.22; 95% CI, 0.11–0.44) after patient care. Hand hygiene varied by activity performed and time in the room. HCP hands were contaminated with AROs in 35 of 385 cultures of hands before patient care (0.9%) and 22 of 350 cultures of hands after patient care (6.3%).
Conclusions:
Hand hygiene adherence in NFs remain low; it is influenced by job title, type of care activity, and glove use. Hand hygiene programs should incorporate these unique care and staffing factors to reduce ARO transmission.
A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW) and even 100 PW, capable of reaching intensities of $10^{23}~\text{W}/\text{cm}^{2}$ in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity $I_{S}=2.3\times 10^{29}~\text{W}/\text{cm}^{2}$ at which the theory of quantum electrodynamics (QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of ${\geqslant}10~\text{PW}$ focused to intensities ${\geqslant}10^{22}~\text{W}/\text{cm}^{2}$.
To investigate the effects of soybean isoflavone (SI) on immunity in infectious bursal disease virus (IBDV)-infected broilers, chicks were fed the same basal diet supplemented with 0 (non-infected control), 0 (infected control), 10, 20 or 40 mg/kg SI for 44 days. At 21 days old, chickens were inoculated with bursal infectious dose causing 50% morbidity of the IBDV BC 6/85 strain by the eye-drop and nasal route (except for non-infected controls). Results showed that, over 1–23 days post-infection (dpi), there was a significant interaction between SI supplementation level and time: high-level SI supplementation increased peripheral T lymphocyte proliferation, percentages of CD3+, CD4+ and CD8+ T lymphocytes, CD4+ to CD8+ ratio, serum concentrations of IgA, IgM and IgG, and IBDV antibody titres. Except for serum IgA and IgM, these variables increased over time with far higher values at 23 dpi than earlier. Compared with non-infected controls, IBDV inoculation decreased peripheral T lymphocyte proliferation at 3 dpi, percentages of CD3+, CD4+ and CD8+ T lymphocytes, and serum IgG, IgM concentration at 23 dpi, and increased IBDV antibody titres at 7, 15 and 23 dpi. Supplemental SI quadratically increased peripheral T lymphocyte proliferation, CD4+ to CD8+ ratio and serum IgA concentration at 3 dpi, percentages of CD3+, CD4+ and CD8+ T lymphocytes at 3 and 23 dpi, and serum IgM concentration and IBDV antibody titres at 23 dpi. These results indicate that dietary SI improved cellular and humoral immunity of IBDV-infected birds and may enhance resistance of Yellow-feathered broilers to infectious diseases.
The mineralogical characteristics of authigenic palygorskite occurring with chlorite and illite in Miocene sediments in Linxia basin were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The XRD results suggest that the mineral composition of the sediments includes mainly quartz, chlorite, illite, calcite, plagioclase, orthoclase, minor palygorskite and small amounts of gypsum and ankerite. Two kinds of palygorskite were observed in the sediments, relatively straight fibrous particles found in matted, felted masses associated with platy chlorite and silky aggregates found in the void spaces. The former probably replaces chlorite grains, growing from the edges or the fissures of chlorite particles. Chlorite grains exhibit bay-shaped or rounded edges, with ambiguous felted boundaries between chlorite particles, indicative of an intensive dissolution process and the growth of palygorskite at the expense of chlorite. Palygorskite is also observed as inclusions within calcite, sprouting from or coating calcite surfaces, suggesting that palygorskite crystallized from solution. The textural relations of palygorskite and the occurrence of ankerite and the characteristically Fe-bearing palygorskite in the sediments suggest the destruction and hydrolysis of chlorite. The ankerite seems to be preferentially present in the void spaces, closely associated with chlorite and illite; fibrous palygorskite crystallizes at the edges of these clay mineral particles and the platy clay mineral particles are gradually replaced by fibrous palygorskite crystals, suggesting that alteration of chlorite to palygorskite involves an interaction with water during the diagenetic process.
This study was designed to explore the association between undernutrition in the growth period and cardiovascular risk factors in a middle-aged Chinese population. A total of 1756 subjects, aged 45–60 years, were invited to participate in the Hefei Nutrition and Health Study and divided into three groups according to their self-reported animal food intake in the growth period. Group 1, Group 2 and Group 3 were defined as undernutrition, nutritional improvement and the good nutrition group, respectively. In the three groups, the subjects in Groups 1 and 2 had more oil and salt intake (P<0.001), and less eggs and milk intake (P<0.001), when compared with the subjects in Group 3. After adjusting for age, education, smoking status and other confounding factors, it was found that male participants who experienced nutritional improvement before age 18 had higher risk of hypertension [odds ratio (OR)=1.68; 95% confidence intervals (CI): 1.05, 2.69] than those with good nutrition, and female participants with undernutrition (OR=1.52; 95% CI: 1.01, 2.29) and nutritional improvement (OR=1.68; 95% CI: 1.04, 2.69) before age 18 had a higher risk of hypertension than those with good nutrition. For diabetes, obesity, hypercholesterolemia and hypertriglyceridemia, our results did not found difference among the three groups both in male and female. Our findings indicated that nutritional deficiency in childhood was associated with bad dietary behaviors and a significantly increased risk of hypertension in middle age. Therefore, early adequate nutrition is very important for the prevention of non-communicable diseases later.
Giant electromagnetic pulses (EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot electrons inside the target, which produce radiation across a wide band from DC to terahertz frequencies. Improved understanding and control of EMP is vital as we enter a new era of high repetition rate, high intensity lasers (e.g. the Extreme Light Infrastructure). We present recent data from the VULCAN laser facility that demonstrates how EMP can be readily and effectively reduced. Characterization of the EMP was achieved using B-dot and D-dot probes that took measurements for a range of different target and laser parameters. We demonstrate that target stalk geometry, material composition, geodesic path length and foil surface area can all play a significant role in the reduction of EMP. A combination of electromagnetic wave and 3D particle-in-cell simulations is used to inform our conclusions about the effects of stalk geometry on EMP, providing an opportunity for comparison with existing charge separation models.
Litter size has a great impact on the profit of swine producers. Uterine development is an important determinant of reproduction efficiency and could hence affect litter size. Chinese Erhualian pig is one of the most prolific breeds in the world, even though large phenotypic variation in litter size was observed within Erhualian sows. To dissect the genetic basis of the phenotypic variation, we herein conducted genome-wide association studies for total number born and number born alive (NBA) of Erhualian sows. In total, one significant single nucleotide polymorphism (SNP) (P<1.78e−06) and 11 suggestive SNPs (P<3.57e−05) were identified on 10 chromosomes, confirming seven previously reported quantitative trait loci (QTL) and uncovering six QTL for litter size or uterus length. One locus on Sus scrofa chromosome (SSC) 13 (79.28 to 90.43 Mb) harbored a cluster of suggestive SNPs associated with multiparous NBA. The SNP (rs81447100) within this region was confirmed to be significantly (P<0.05) associated with litter size in Erhualian (n=313), Sutai (n=173) and Yorkshire (n=488) populations. Retinol binding protein 2 and retinol binding protein 1 functionally related to the development of uterus were located in a region of 2 Mb around rs81447100. Moreover, four genes related to embryo implantation and development were also detected around other significant SNPs. Taken together, our findings provide a potential marker (rs81447100) for the genetic improvement of litter size not only in Chinese Erhualian pigs but also in European commercial pig breeds like Yorkshire, and would facilitate the final identification of causative variant(s) underlying the effect of SSC13 QTL on litter size.