We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Roffelsen is an early Younge phase mortuary component in southwestern Ontario. The single burial feature is a pit containing the articulated skeletons of seven successively buried individuals, ranging in age from a few months to late middle age. All had been stripped of soft tissues, except for the connecting tissues that maintained their articulation. Most also had a disk cut from the cranium and a hole drilled near bregma. All but the infant display various forms of developmental failure of the outer and middle ear and the petrous portion of the temporal bone. The pit was apparently the burial facility for an extended family with significant hearing impairments. This disability may have limited their interaction with neighboring communities, perhaps even playing a role in their eventual disappearance as a separate community.
In small-scale testing at elevated temperatures, impurities in inert gases can pose problems so that testing in vacuum would be desirable. However, previous experiments have indicated difficulties with thermal stability and instrument noise. To investigate this, measurements of the temperature changes in a modified nanoindenter have been made and their influence on the displacement and load measurements is discussed. It is shown that controlling the temperatures of the indenter tip and the sample enabled flat punch indentations of gold, a good thermal conductor, to be carried out over several minutes at 665 °C in vacuum, as well as permitting thermal stability to be quickly re-established in site-specific microcompression experiments. This allowed compression of nickel superalloy micropillars up to sample temperatures of 630 °C with very low levels of oxidation after 48 h. Furthermore, the measured Young moduli, yield and flow stresses were consistent with literature data.
Email your librarian or administrator to recommend adding this to your organisation's collection.