We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study examines the presence of bacterial contamination on surgical gloves and suggests appropriate measures for an aseptic surgical environment. To prevent glove contamination during surgery, surgeons and assistants should change gloves periodically, and scrub nurses should be careful when opening packages and handing over implants.
To evaluate the bidirectional relationship between blood pressure (BP) and depressive symptoms using a large prospective cohort study.
Methods
Prospective cohort study was performed in 276 244 adults who participated in a regular health check-up and were followed annually or biennially for up to 5.9 years. BP levels were categorised according to the 2017 American College of Cardiology and American Heart Association hypertension guidelines. Depressive symptoms were assessed using Centre for Epidemiologic Studies-Depression (CESD) questionnaire and a cut-off score of ≥25 was regarded as case-level depressive symptoms.
Results
During 672 603.3 person-years of follow-up, 5222 participants developed case-level depressive symptoms. The multivariable-adjusted hazard ratios (HRs) [95% confidence interval (CI)] for incident case-level depressive symptoms comparing hypotension, elevated BP, hypertension stage 1 and hypertension stage 2 to normal BP were 1.07 (0.99–1.16), 0.93 (0.82–1.05), 0.89 (0.81–0.97) and 0.81 (0.62–1.06), respectively (p for trend <0.001). During 583 615.3 person-years of follow-up, 27 787 participants developed hypertension. The multivariable-adjusted HRs (95% CI) for incident hypertension comparing CESD 16–24 and ⩾25 to CESD < 16 were 1.05 (1.01–1.11) and 1.12 (1.03–1.20), respectively (p for trend <0.001) and in the time-dependent models, corresponding HRs (95% CI) were 1.12 (1.02–1.24) and 1.29 (1.10–1.50), respectively (p for trend <0.001).
Conclusions
In this large cohort study of young and middle-aged individuals, higher BP levels were independently associated with a decreased risk for developing case-level depressive symptoms and depressive symptoms were also associated with incident hypertension. Further studies are required to elucidate the mechanisms underlying the bidirectional association between BP levels and incident depression.
This paper proposes a planar monopole antenna with a parabolic edge shape. This antenna, which has notch characteristics in the wireless local area network (WLAN) band, can be miniaturized. To obtain the notch characteristics in the WLAN band, a slot with a parabolic edge shape identical to that of the monopole structure was implemented. Because the planar monopole antenna with a parabolic edge shape possesses characteristics similar to those in self-complementary structure conditions, it can be miniaturized by reducing the antenna components at the same proportion. For the antenna fabrication, an FR4 dielectric substrate with a dielectric constant of 4.7 was used. The size of the miniaturized antenna that satisfies the ultra-wide band requirement was 15.6 × 18.6 mm2, and the 10-dB band was 3.013–12.515 GHz. At each frequency, the radiation pattern was similar to that of a dipole antenna.
Decreased hemoglobin levels increase the risk of developing dementia among the elderly. However, the underlying mechanisms that link decreased hemoglobin levels to incident dementia still remain unclear, possibly due to the fact that few studies have reported on the relationship between low hemoglobin levels and neuroimaging markers. We, therefore, investigated the relationships between decreased hemoglobin levels, cerebral small-vessel disease (CSVD), and cortical atrophy in cognitively healthy women and men.
Methods:
Cognitively normal women (n = 1,022) and men (n = 1,018) who underwent medical check-ups and magnetic resonance imaging (MRI) were enrolled at a health promotion center. We measured hemoglobin levels, white matter hyperintensities (WMH) scales, lacunes, and microbleeds. Cortical thickness was automatically measured using surface based methods. Multivariate regression analyses were performed after controlling for possible confounders.
Results:
Decreased hemoglobin levels were not associated with the presence of WMH, lacunes, or microbleeds in women and men. Among women, decreased hemoglobin levels were associated with decreased cortical thickness in the frontal (Estimates, 95% confidence interval, −0.007, (−0.013, −0.001)), temporal (−0.010, (−0.018, −0.002)), parietal (−0.009, (−0.015, −0.003)), and occipital regions (−0.011, (−0.019, −0.003)). Among men, however, no associations were observed between hemoglobin levels and cortical thickness.
Conclusion:
Our findings suggested that decreased hemoglobin levels affected cortical atrophy, but not increased CSVD, among women, although the association is modest. Given the paucity of modifiable risk factors for age-related cognitive decline, our results have important public health implications.
There is increasing evidence of a relationship between underweight or obesity and dementia risk. Several studies have investigated the relationship between body weight and brain atrophy, a pathological change preceding dementia, but their results are inconsistent. Therefore, we aimed to evaluate the relationship between body mass index (BMI) and cortical atrophy among cognitively normal participants.
Methods:
We recruited cognitively normal participants (n = 1,111) who underwent medical checkups and detailed neurologic screening, including magnetic resonance imaging (MRI) in the health screening visits between September 2008 and December 2011. The main outcome was cortical thickness measured using MRI. The number of subjects with five BMI groups in men/women was 9/9, 148/258, 185/128, 149/111, and 64/50 in underweight, normal, overweight, mild obesity, and moderate to severe obesity, respectively. Linear and non-linear relationships between BMI and cortical thickness were examined using multiple linear regression analysis and generalized additive models after adjustment for potential confounders.
Results:
Among men, underweight participants showed significant cortical thinning in the frontal and temporal regions compared to normal weight participants, while overweight and mildly obese participants had greater cortical thicknesses in the frontal region and the frontal, temporal, and occipital regions, respectively. However, cortical thickness in each brain region was not significantly different in normal weight and moderate to severe obesity groups. Among women, the association between BMI and cortical thickness was not statistically significant.
Conclusions:
Our findings suggested that underweight might be an important risk factor for pathological changes in the brain, while overweight or mild obesity may be inversely associated with cortical atrophy in cognitively normal elderly males.
Epidemiological studies have reported that higher education (HE) is associated with a reduced risk of incident Alzheimer's disease (AD). However, after the clinical onset of AD, patients with HE levels show more rapid cognitive decline than patients with lower education (LE) levels. Although education level and cognition have been linked, there have been few longitudinal studies investigating the relationship between education level and cortical decline in patients with AD. The aim of this study was to compare the topography of cortical atrophy longitudinally between AD patients with HE (HE-AD) and AD patients with LE (LE-AD).
Methods:
We prospectively recruited 36 patients with early-stage AD and 14 normal controls. The patients were classified into two groups according to educational level, 23 HE-AD (>9 years) and 13 LE-AD (≤9 years).
Results:
As AD progressed over the 5-year longitudinal follow-ups, the HE-AD showed a significant group-by-time interaction in the right dorsolateral frontal and precuneus, and the left parahippocampal regions compared to the LE-AD.
Conclusion:
Our study reveals that the preliminary longitudinal effect of HE accelerates cortical atrophy in AD patients over time, which underlines the importance of education level for predicting prognosis.
This report covers the resistive switching characteristics of cross-bar type semi-transparent (or see-through) resistive random access memory (RRAM) devices based on ZnO. In order to evaluate the transmittance of the devices, we designed the memory array with various electrode sizes and spaces between the electrodes. To prevent read disturbance problems due to sneak currents, we employed a metal oxide based p-NiO/n-ZnO diode structure, which exhibited good rectifying characteristics and high forward current density. Based on these results, we found that the combined metal oxide diode/RRAM device could be promising candidate with suppressed read disturbances of cross-bar type ZnO RRAM device.
We report resistive switching characteristics in Pt/ZnO/Pt devices where ZnO thin film is fabricated at various oxygen conditions. With the increase of oxygen contents in ZnO thin film, the forming voltage is gradually increased while reset and set voltages are almost unchanged. We also investigated the effect of top electrodes on resistive switching of top electrode/ZnO/Pt device. For a Pt/ZnO/Pt device, it exhibits the excellent resistive switching behavior due to high electrical field of the well-defined Schottky barrier. For Al/ZnO/Pt device, little resistive switching phenomena were occurred due to leakage current of the weak Schottky (or Ohmic) contact.
A post heat treatment of reaction-sintered SiC at 1700 °C in nitrogen atmosphere significantly reduced electrical resistivity. A trace of insulating Si3N4 phase was detected via nitrogen heat treatment in high-resolution transmission electron microscopy observation; however, based on x-ray photoelectron spectroscopy, the evidence of nitrogen doping into SiC lattice has been claimed as the mechanism to the decreased resistivity. The increase of the total volume of SiC was apparent in x-ray diffraction during the nitrogen heat treatment, which was interpreted to stem from the growth of the nitrogen-doped intergranular SiC particles and surface doping of the primary SiC to reduce the contact resistance between the primary SiC particles.
We fabricated PMOS SPC-Si TFTs which show better current uniformity than ELA poly-Si TFTs and superior stability compare to a-Si:H TFT on a glass substrate employing alternating magnetic field crystallization. However the leakage current of SPC-Si TFT was rather high for circuit element of AMOLED display due to many grain boundaries which could be electron hole generation centers. We applied off-state bias annealing of VGS=5V, VDS=−20V in order to suppress the leakage current of SPC-Si TFT. When the off-state bias annealing was applied on the SPC-Si TFT, the electron carriers were trapped in the gate insulator by high gate-drain voltage (25V). The trapped electron carriers could reduce the gate-drain field, so that the leakage current of SPC-Si TFT was reduced after off-state bias annealing. We applied AC-bias stress on the gate node of SPC-Si TFT for 20,000 seconds in order to verify that the leakage current of SPC-Si TFT could be remained low at actual AMOLED display circuit after off-state bias annealing. The suppressed leakage current was not altered after AC-bias stress. The off-state bias annealed SPC-Si TFT could be used as pixel element of high quality AMOLED display.
Silicon dioxide (SiO2) films were deposited on crystalline silicon substrate by inductively coupled plasma chemical vapor deposition (ICP-CVD). In this paper, various process parameter-gas flow rate, ICP RF power, Process pressure were discussed for the investigation of refractive index. And some properties of the SiO2 film are investigated. Since there was no external substrate heating during the deposition, the SiO2 film showed poor electrical characteristics, such as shifted flat-band voltage and high effective charge density. We have proposed He plasma pre-treatment in order to reduce the interface fixed charge and some post-treatment. Our experimental results shows that He plasma pre-treatment supply thermal energy for decomposition of reactant gas and to remove effective charges. Hydrogen post-treatment also enhances electrical characteristics. We measured the effect of the plasma treatment using FT-IR spectrum and C-V characteristics.
The syntxhesis, photo-physics, and electroluminescence of new types of Iridium(III)-encapsulated dendrimers are described. Thus, four different iridium complexes [Ir(III)(C^N)2(LX), Blue-DCBP, Green-DCBP, Yellow-DCBP, and Red-DCBP] with ancillary ligand tethered to the CBP dendritic unit were synthesized and investigated for their photo-physical properties. A large enhancement in electroluminescence performance was observed by using these dendrimers as host/dopant hybrid materials in layered emitting diodes. In particular, host/dopant ratio can be systematically adjusted by varying dendritic generations. These results demonstrate that new Ir(III)-encapsulated dendrimers can be used as potential single-layer materials for organic light emitting diodes. Large difference in the intra-molecular charge transfer phosphorescence quantum yields and electroluminescence effiencies were observed among dendriritic generations.
Carbosilane dendrimers adorned with either triarylamine or carbazole units in their periphery exhibit novel electrochemical behavior in which the electrochemical deposition is controlled by dendrite generation. In addition, the deposited layers remained intact in the depositing solvent, methylene chloride, allowing a second layer to be deposited on top of the first layer. We have sought to establish the suitability of this electrochemical deposition technique for use in the construction of multi-layer OLEDs, which cannot be fabricated via conventional spin-coating with a polymeric precursor. Thus, the electrochemical deposition-based process could potentially offer an ideal combination of deposition control on the one hand and multi-layer fabrication on the other. We report herein the novel electrochemical deposition behavior of arylamine or carbazole end-capped carbosilane dendrimers of the type GnNPB or GnCBP (n = 1-4) and their use for the formation of multi-layer devices for OLEDs.
Hydride-Metalorganic Vapor Phase Epitaxy (H-MOVPE) was used to grow a series of films on c-Al2O3 substrates. Depending on the growth temperature and HCl/TMIn molar ratio, InN deposited as a continuous film or a collection of micro or nanorods, or no InN growth was observed. A chemical equilibrium analysis of the In-N-H-Cl system predicts both InN growth and etching regimes with the nanorod growth observed near the growth-etching transition. All InN rod structures demonstrated well faceted hexagonal structure with a near random orientation of the rods, while the films were polycrystalline.
Bonding process using indium-silver alloy which can withstand high temperature was investigated at relatively low temperature. We used a thermal evaporator and vacuum coater for making indium-silver contact. From the result of experiment, we observed that indium and silver films which have good quality are formed. From phase diagram of In-Ag alloy, we can find that melting point of these compounds increases with the silver content, i.e. eutectic (144° C) <AgIn2 (166° C) < (300° C) < (670° C) < (695° C). And these compounds are determined by the composition ratio of the source metal. Now we confirmed the thermal characteristics of Indium-Silver alloy is controlled by silver. Consequently we have developed Ag/In/Ag multi-layer composite which has higher melting point than that of normal contact. The melting point of Ag/In/Ag multi-layer is about 700° C. The joint cross-sections are studied using SEM(scanning electron microscopy) and EDX(Energy Dispersive X-rays). From these data, we observed that the composition and microstructure of Ag/In/Ag multi-layer were reliable and this bonding procedure is a better technique compared to the conventional structure of quantum well LED and GaN/Si LED structure was made by using sapphire for substrate and might be good for high temperature electronic devices in the future.
ZnO thin films and ZnO-Si-ZnO multi-layer thin films have been deposited by pulsed laser deposition (PLD). And then, the films have been annealed at 300°C in oxygen ambient pressure. The optical and structural properties changed by Si layer in ZnO thin film. UV and visible peak position was shifted by Si layer. Electrical properties of the films were improved slightly than ZnO thin film without Si layer. The optical and structural properties of ZnO thin films and ZnOSi-ZnO multi-layer thin films were characterized by PL (Photoluminescence) and XRD(X-ray diffraction method), respectively. Electrical properties were measured by van der Pauw Hall measurements.
ZnO thin films were grown with different plume-substrate angles and growth times by pulsed laser deposition. The angles between plume propagation direction and substrate plane were changed from 0°, 45° to 90°. The growth time was changed in order to adjust film thickness. From the XRD pattern exhibiting dominant (002) XRD peak of ZnO, all films were found to be c-axis oriented. Optical property of ZnO thin films were investigated by PL(Photoluminescence). The ratio of UV/green luminescent intensity of ZnO thin film increased, as the angle between plume and substrate plane decrease from 90° to 0°.
Proper selection of an osteotome for nasal osteotomy is important for minimizing soft tissue trauma. Radiographic analysis of the facial bony lateral wall thickness was performed to suggest a guideline for an appropriate osteotome size for Asians. Facial bone computed tomography (CT) of 100 patients (50 male, 50 female) were studied. The thickness of the facial bony lateral wall at three points along the track of a lateral osteotomy, and two points along the track of a medial osteotomy and intermediate osteotomy were measured. The average bony thickness along the track of a lateral osteotomy was 2.61 ± 0.66 mm at the low level, 2.75 ± 0.76 mm at the middle level, and 2.72 ± 0.53 mm at the high level in subjects. The average bony thickness along the track of an intermediate osteotomy were 1.26 ± 0.34 mm at the low level, and 1.31 ± 0.32 mm at the high level in the subjects. The average bony thickness along the track of the medial osteotomy were 2.54 ± 0.31 mm at the lowlevel, and 2.77 ± 0.30 mm at the high level in subjects. These results may provide a guideline for choosing an osteotome of appropriate size for the Asian population.
The YSTAR program is a general sky survey looking for variability. The main equipments are three 0.5-m telescopes. These telescopes have fast F/2 optics covering nearly 3.5 square degree field onto a 2K CCD. They also have very fast slew capability, which exceeds 10 degrees per second. These two factors make them most suitable for rapid target acquisition and wide-field surveys of various kinds. Our primary objective is to identify and monitor variable stars down to 18th R-magnitude, and our observing mode allows the same data set to be also useful in identifying asteroids. Our first telescope has just begun regular automated operation, and the second telescope will be installed in South Africa within this year to provide coverage of the southern sky.
Tantalum oxide films were grown by chemical vapor deposition using an alternating supply of tantalum pentaethoxide and ammonia. The supply of one source was followed by a purge with argon gas before introducing the other source onto the substrate in order to prevent gas-phase reactions. At substrate temperature between 250-275 °C the film growth depended only on the number of source supply cycles (0.15 nm/cycle) and did not depend on the substrate temperature nor supply time of the sources. As-deposited films were amorphous, however, were crystallized after annealing at 800 °C in oxygen atmosphere by rapid thermal process. Annealed films showed increased dielectric constant and decreased leakage current density, which were 13.3 and 6.6 μA/cm2 at 1 MV/cm, respectively, for a 15-nm-thick film after annealing at 800 °C for 10 minutes.