We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lactoferrin (LF) is a multifunctional glycoprotein in mammalian milk. In a previous report, we showed that enteric-coated bovine LF tablets can decrease visceral fat accumulation, hypothesising that the enteric coating is critical to the functional peptides reaching the visceral fat tissue and exerting their anti-adipogenic activity. The aim of the present study was to assess whether ingested LF can retain its anti-adipogenic activity. We therefore investigated the effects of LF and LF treated with digestive enzymes (the stomach enzyme pepsin and the small intestine enzyme trypsin) on lipid accumulation in pre-adipocytes derived from the mesenteric fat tissue of male Sprague–Dawley rats. Lipid accumulation in pre-adipocytes was significantly reduced by LF in a dose-dependent manner and was associated with reduction in gene expression of CCAAT/enhancer binding protein delta, CCAAT/enhancer binding protein alpha and PPARγ as revealed by DNA microarray analysis. Trypsin-treated LF continued to show anti-adipogenic action, whereas pepsin-treated LF abrogated the activity. When an LF solution (1000 mg bovine LF) was administered by gastric intubation to Sprague–Dawley rats, immunoreactive LF determined by ELISA could be detected in mesenteric fat tissue at a concentration of 14·4 μg/g fat after 15 min. The overall results point to the importance of enteric coating for action of LF as a visceral fat-reducing agent when administered in oral form.
The interface between an a-axis oriented YBa2Cu3O7-x film and a NdGaO3(110) substrate has been investigated by cross-section transmission electron microscopy (TEM). The orientational relationship between the a-axis oriented film and substrate is YBa2Cu3O7-x[001] / NdGaO3[001]. This preferentially c-axis aligned direction of the YBa2Cu3O7-x film would be caused by a very small lattice mismatch (0.1%) between b(=a) lattice constant of YBa2Cu3O7-x and of the pseudo-cubic sub-lattices in NdGaO3 at a substrate temperature of 750°C. Two kinds of imperfections have been observed in the crystal lattice of YBa2Cu3O7-x near the interface; One is the deviation of YBa2Cu3O7-x [301] from NdGaO3 [111]. The other type is pair dislocations with a positive and negative Burgers vectors in the YBa2Cu3O7-x (103) planes. These two kinds of defects at the interface would be act to reduce the tensile stress within a distance of about l.lnm from the substrate interface.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.