We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fetal cardiac intervention provides fetuses with certain cardiac anomalies, a greater likelihood of biventricular circulation and/or treatment options after delivery. Anesthesia care for mothers undergoing fetal cardiac intervention has evolved over the years and more recently involves the use of neuraxial anesthesia with sedation. The maternal fetal anesthesiologist caring for the patient undergoing fetal cardiac intervention should be conversant with the diagnosis, pathophysiology, and planned intervention. This is important for appropriate anticipation and treatment of hemodynamic changes that may occur in the fetus immediately following intervention.
Scimitar syndrome is a rare CHD composed of partial anomalous pulmonary venous connection from the right lung, via a scimitar vein, to the inferior vena cava rather than the left atrium. Genetic conditions associated with scimitar syndrome have not been well investigated at present.
Methods:
Our study included patients with scimitar syndrome diagnosed at Texas Children’s Hospital from January 1987 to July 2020. Medical records were evaluated to determine if genetic testing was performed, including chromosomal microarray analysis or whole-exome sequencing. Copy number variants identified as pathogenic/likely pathogenic and variants of unknown significance were collected. Analyses of cardiac and extracardiac findings were performed via chart review.
Results:
Ninety-eight patients were identified with scimitar syndrome, 89 of which met inclusion criteria. A chromosome analysis or chromosomal microarray analysis was performed in 18 patients (20%). Whole-exome sequencing was performed in six patients following negative chromosomal microarray analysis testing. A molecular genetic diagnosis was made in 7 of 18 cases (39% of those tested). Ninety-six per cent of the cohort had some type of extracardiac finding, with 43% having asthma and 20% having a gastrointestinal pathology. Of the seven patients with positive genetic testing, all had extracardiac anomalies with all but one having gastrointestinal findings and 30% having congenital diaphragmatic hernia.
Conclusions:
Genetic testing revealed an underlying diagnosis in roughly 40% of those tested. Given the relatively high prevalence of pathogenic variants, we recommend chromosomal microarray analysis and whole-exome sequencing for patients with scimitar syndrome and extracardiac defects.
Families of children born with CHD face added stress owing to uncertainty about the magnitude of the financial burden for medical costs they will face. This study seeks to assess the family responsibility for healthcare bills during the first 12 months of life for commercially insured children undergoing surgery for severe CHD.
Methods
The MarketScan® database from Truven was used to identify commercially insured infants in 39 states from 2010 to 2012 with an ICD-9 diagnosis code for transposition of the great arteries, tetralogy of Fallot, or truncus arteriosus, as well as the corresponding procedure code for complete repair. Data extraction identified payment responsibilities of the patients’ families in the form of co-payments, deductibles, and co-insurance during the 1st year of life.
Results
There were 481 infants identified who met the criteria. Average family responsibility for healthcare bills during the 1st year of life was $2928, with no difference between the three groups. The range of out-of-pocket costs was $50–$18,167. Initial hospitalisation and outpatient care accounted for the majority of these responsibilities.
Conclusions
Families of commercially insured children with severe CHD requiring corrective surgery face an average of ~$3000 in out-of-pocket costs for healthcare bills during the first 12 months of their child’s life, although the amount varied considerably. This information provides a framework to alleviate some of the uncertainty surrounding healthcare financial responsibilities, and further examination of the origination of these expenditures may be useful in informing future healthcare policy discussion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.