We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Random effects meta-analysis model is an important tool for integrating results from multiple independent studies. However, the standard model is based on the assumption of normal distributions for both random effects and within-study errors, making it susceptible to outlying studies. Although robust modeling using the t distribution is an appealing idea, the existing work, that explores the use of the t distribution only for random effects, involves complicated numerical integration and numerical optimization. In this article, a novel robust meta-analysis model using the t distribution is proposed (tMeta). The novelty is that the marginal distribution of the effect size in tMeta follows the t distribution, enabling that tMeta can simultaneously accommodate and detect outlying studies in a simple and adaptive manner. A simple and fast EM-type algorithm is developed for maximum likelihood estimation. Due to the mathematical tractability of the t distribution, tMeta frees from numerical integration and allows for efficient optimization. Experiments on real data demonstrate that tMeta is compared favorably with related competitors in situations involving mild outliers. Moreover, in the presence of gross outliers, while related competitors may fail, tMeta continues to perform consistently and robustly.
Substantial changes resulting from the interaction of environmental and dietary factors contribute to an increased risk of obesity, while their specific associations with obesity remain unclear. We identified inflammation-related dietary patterns (DP) and explored their associations with obesity among urbanised Tibetan adults under significant environmental and dietary changes. Totally, 1826 subjects from the suburbs of Golmud City were enrolled in an open cohort study, of which 514 were followed up. Height, weight and waist circumference were used to define overweight and obesity. DP were derived using reduced rank regression with forty-one food groups as predictors and high-sensitivity C-reactive protein and prognostic nutritional index as inflammatory response variables. Altitude was classified as high or ultra-high. Two DP were extracted. DP-1 was characterised by having high consumptions of sugar-sweetened beverages, savoury snacks, and poultry and a low intake of tsamba. DP-2 had high intakes of poultry, pork, animal offal, and fruits and a low intake of butter tea. Participants in the highest tertiles (T3) of DP had increased risks of overweight and obesity (DP-1: OR = 1·37, 95 % CI 1·07, 1·77; DP-2: OR = 1·48, 95 % CI 1·18, 1·85) than those in the lowest tertiles (T1). Participants in T3 of DP-2 had an increased risk of central obesity (OR = 2·25, 95 % CI 1·49, 3·39) than those in T1. The positive association of DP-1 with overweight and obesity was only significant at high altitudes, while no similar effect was observed for DP-2. Inflammation-related DP were associated with increased risks of overweight and/or obesity.
This paper delves into the influence of network media on the efficacy of emergency response during natural disasters. Given the frequent occurrence of disasters that pose significant risks to urban areas, effective emergency response mechanisms are paramount. Leveraging the Data Envelopment Analysis (DEA) model, this study assesses disaster response efficiency by analyzing network information. It explores the distinct characteristics of disaster response across different types of natural disasters and their various occurrence stages. To this end, three emblematic disasters are chosen for empirical analysis: the 2021 Zhengzhou heavy rainstorm, the 2022 Super Typhoon Chaba, and the 2022 Luding earthquake. Our findings reveal disparities in response efficiency among these disaster types, with Zhengzhou’s rainstorm response demonstrating the highest efficiency, followed by the Super Typhoon Chaba, and the Luding earthquake yielding the lowest efficiency. Furthermore, this study meticulously discusses the pivotal factors that shape response efficiency, encompassing government decision-making, emergency rescue operations, and social assistance. By pinpointing optimal response strategies tailored to distinct disaster stages, this paper underscores its contribution toward augmenting disaster response efficiency and fostering urban safety and disaster preparedness.
Sjögren's syndrome (SS) is a chronic autoimmune disease caused by immune system disorders. The main clinical manifestations of SS are dry mouth and eyes caused by the destruction of exocrine glands, such as the salivary and lacrimal glands, and systemic manifestations, such as interstitial pneumonia, interstitial nephritis and vasculitis. The pathogenesis of this condition is complex. However, this has not been fully elucidated. Treatment mainly consists of glucocorticoids, disease-modifying antirheumatic drugs and biological agents, which can only control inflammation but not repair the tissue. Therefore, identifying methods to regulate immune disorders and repair damaged tissues is imperative. Cell therapy involves the transplantation of autologous or allogeneic normal or bioengineered cells into the body of a patient to replace damaged cells or achieve a stronger immunomodulatory capacity to cure diseases, mainly including stem cell therapy and immune cell therapy. Cell therapy can reduce inflammation, relieve symptoms and promote tissue repair and regeneration of exocrine glands such as the salivary glands. It has broad application prospects and may become a new treatment strategy for patients with SS. However, there are various challenges in cell preparation, culture, storage and transportation. This article reviews the research status and prospects of cell therapies for SS.
Characterised by the extensive use of obsidian, a blade-based tool inventory and microblade technology, the late Upper Palaeolithic lithic assemblages of the Changbaishan Mountains are associated with the increasingly cold climatic conditions of Marine Isotope Stage 2, yet most remain poorly dated. Here, the authors present new radiocarbon dates associated with evolving blade and microblade toolkits at Helong Dadong, north-east China. At 27 300–24 100 BP, the lower cultural layers contain some of the earliest microblade technology in north-east Asia and highlight the importance of the Changbaishan Mountains in understanding changing hunter-gatherer lifeways in this region during MIS 2.
To evaluate the variations in COVID-19 case fatality rates (CFRs) across different regions and waves, and the impact of public health interventions, social and economic characteristics, and demographic factors on COVID-19 CFRs, we collected data from 30 countries with the highest incidence rate in three waves. We summarized the CFRs of different countries and continents in each wave through meta-analysis. Spearman’s correlation and multiple linear regression were employed to estimate the correlation between influencing factors and reduction rates of CFRs. Significant differences in CFRs were observed among different regions during the three waves (P < 0.001). An association was found between the changes in fully vaccinated rates (rs = 0.41), population density (rs = 0.43), the proportion of individuals over 65 years old (rs = 0.43), and the reduction rates of case fatality rate. Compared to Wave 1, the reduction rates in Wave 2 were associated with population density (β = 0.19, 95%CI: 0.05–0.33) and smoking rates (β = −4.66, 95%CI: −8.98 – −0.33), while in Wave 3 it was associated with booster vaccine rates (β = 0.60, 95%CI: 0.11–1.09) and hospital beds per thousand people (β = 4.15, 95%CI: 1.41–6.89). These findings suggest that the COVID-19 CFRs varied across different countries and waves, and promoting booster vaccinations, increasing hospital bed capacity, and implementing tobacco control measures can help reduce CFRs.
The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
Nontuberculous mycobacteria (NTM) is a large group of mycobacteria other than the Mycobacterium tuberculosis complex and Mycobacterium leprae. Epidemiological investigations have found that the incidence of NTM infections is increasing in China, and it is naturally resistant to many antibiotics. Therefore, studies of NTM species in clinical isolates are useful for understanding the epidemiology of NTM infections. The present study aimed to investigate the incidence of NTM infections and types of NTM species. Of the 420 samples collected, 285 were positive for M. tuberculosis, 62 samples were negative, and the remaining 73 samples contained NTM, including 35 (8.3%) only NTM and 38 (9%) mixed (M. tuberculosis and NTM). The most prevalent NTM species were Mycobacterium intracellulare (30.1%), followed by Mycobacterium abscessus (15%) and M. triviale (12%). M. gordonae infection was detected in 9.5% of total NTM-positive cases. Moreover, this study reports the presence of Mycobacterium nonchromogenicum infection and a high prevalence of M. triviale for the first time in Henan. M. intracellulare is the most prevalent, accompanied by some emerging NTM species, including M. nonchromogenicum and a high prevalence of M. triviale in Henan Province. Monitoring NTM transmission and epidemiology could enhance mycobacteriosis management in future.
A dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations, which challenge the mean-field description of the system. Here, we explore the novel dynamics of a non-Brownian suspension under orbital oscillations, where localized density waves along the flow direction appear beyond an excitation frequency threshold and self-organize into a hexagonal pattern across the system. The spontaneous occurrence of the inhomogeneity pattern arises from a coupling between particle advection and the shear-thickening nature of the suspension. Through linear stability analysis, we show that they overcome the stabilizing effects of particle pressure at sufficient particle volume fraction and oscillation frequency. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for developing local disturbance.
The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear.
Methods
By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders.
Results
SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07–1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06–1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04–1.18, p = 1.84 × 10−3).
Conclusions
We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.
Two-dimensional oblique detonation wave (ODW) propagations in partially prevaporized n-heptane sprays are numerically simulated with a skeletal chemical mechanism. The influences of the droplet diameter and total equivalence on oblique detonation are considered. The initiation length is found to increase first and then decrease with increasing initial droplet diameter, and the effect of droplet size is maximized when the initial droplet diameter is approximately $10\ \mathrm {\mu } {\rm m}$. As the initial droplet diameter varies, unsteady and steady ODWs are observed. In the cases of unsteady ODWs, temperature gradients and non-uniform distributions of the reactant mixture due to droplet evaporation lead to formation of unsteady detonation propagation, therefore leading to fluctuations in the initiation length. The fluctuations in initiation length decrease as the pre-evaporation gas equivalence ratio increases for the unsteady cases. The results further suggest that the relationship between the evaporation layer thickness along the streamline and the corresponding theoretical initiation length can be used to identify an unsteady or steady ODW in cases with large droplets that evaporate behind an oblique shock wave or ODW under the effects of different initial droplet diameters.
We aimed to examine the association between dietary Se intake and CVD risk in Chinese adults.
Design:
This prospective cohort study included adults above 20 years old in the China Health and Nutrition Survey (CHNS), and they were followed up from 1997 to 2015 (n 16 030). Dietary data were retrieved from CHNS, and a 3-d, 24-h recall of food intake was used to assess the cumulative average intake of dietary Se, which was divided into quartiles. The Cox proportional hazards model was adopted to analyse the association between dietary Se intake and incident CVD risk.
A total of 663 respondents developed CVD after being followed up for a mean of 9·9 years (median 9 years). The incidence of CVD was 4·3, 3·7, 4·6 and 4·0 per 1000 person-years across the quartiles of cumulative Se intake. After adjusting all potential factors, no significant associations were found between cumulative Se intake and CVD risk. No interactions were found between Se intake and income, urbanisation, sex, region, weight, hypertension and CVD risk.
Conclusion:
We found no association between dietary Se and CVD.
Social hierarchical information impacts language comprehension. Nevertheless, the specific process underlying the integration of linguistic and extralinguistic sources of social hierarchical information has not been identified. For example, the Chinese social hierarchical verb 赡养, /shan4yang3/, ‘support: provide for the needs and comfort of one’s elders’, only allows its Agent to have a lower social status than the Patient. Using eye-tracking, we examined the precise time course of the integration of these semantic selectional restrictions of Chinese social hierarchical verbs and extralinguistic social hierarchical information during natural reading. A 2 (Verb Type: hierarchical vs. non-hierarchical) × 2 (Social Hierarchy Sequence: match vs. mismatch) design was constructed to investigate the effect of the interaction on early and late eye-tracking measures. Thirty-two participants (15 males; age range: 18–24 years) read sentences and judged the plausibility of each sentence. The results showed that violations of semantic selectional restrictions of Chinese social hierarchical verbs induced shorter first fixation duration but longer regression path duration and longer total reading time on sentence-final nouns (NP2). These differences were absent under non-hierarchical conditions. The results suggest that a mismatch between linguistic and extralinguistic social hierarchical information is immediately detected and processed.
Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83–0.85) and 0.82 (95% CI, 0.78–0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
The anxiety disorder among students in modern public space design has become a common phenomenon, which can affect their learning efficiency and life health. Therefore, it is necessary to study the theoretical basis of environmental psychology on the relationship between environment and anxiety and explore the impact of humanistic environmental landscape design on modern public space design students’ anxiety disorders from the perspective of psychology.
Subjects and Methods
The study used a questionnaire survey method to collect environmental factors that trigger students’ anxiety and obtained a ranking of the importance of environmental factors through quantitative analysis. The impact of environmental characteristics such as physical environment, visual landscape, and spatial scale of buildings on students’ anxiety disorders was analyzed through on-site research. The effectiveness of humanistic environmental landscape design from the perspective of psychology was tested using the Svell building ventilation software in Computational Fluid Dynamics (CFD). Simultaneously using the State Anxiety Inventory (SAI) to detect students’ anxiety.
Results
From the perspective of psychology, the humanistic concept of odor, ventilation, and heat and humidity has been optimized and designed to create a spatial environment conducive to alleviating students’ anxiety. It can effectively reduce anxiety caused by poor ventilation and prevent aggravation of anxiety due to high humidity and odors.
Conclusions
The humanistic concept of environmental landscape design from the perspective of psychology has a positive impact on students’ anxiety disorders in modern public space design.
Acknowledgement
The 2021 Fujian Provincial Education and Research Project for Middle and Young Teachers (Technology) (No. JAT210571).
Purple nutsedge (Cyperus rotundus L.) is a globally distributed noxious weed that poses a significant challenge for control due to its fast and efficient propagation through the tuber, which is the primary reproductive organ. Gibberellic acid (GA3) has proven to be crucial for tuberization in tuberous plants. Therefore, understanding the relationship between GA3 and tuber development and propagation of C. rotundus will provide valuable information for controlling this weed. This study shows that the GA3 content decreases with tuber development, which corresponds to lower expression of bioactive GA3 synthesis genes (CrGA20ox, two CrGA3ox genes) and two upregulated GA3 catabolism genes (CrGA2ox genes), indicating that GA3 is involved in tuber development. Simultaneously, the expression of two CrDELLA genes and CrGID1 declines with tuber growth and decreased GA3, and yeast two-hybrid assays confirm that the GA3 signaling is DELLA-dependent. Furthermore, exogenous application of GA3 markedly reduces the number and the width of tubers and represses the growth of the tuber chain, further confirming the negative impact that GA3 has on tuber development and propagation. Taken together, these results demonstrate that GA3 is involved in tuber development and regulated by the DELLA-dependent pathway in C. rotundus and plays a negative role in tuber development and propagation.
To comprehensively study the physical properties of inductively coupled plasma (ICP), a finite element method (FEM) simulation model of ICP is developed using the well-established COMSOL software. To benchmark the validation of the FEM model, two key physical parameters, the electron density and the electron temperature of the ICP plasma, are precisely measured by the state-of-the-art laser Thomson scattering diagnostic approach. For low-pressure plasma such as ICP, the local pressure in the generator tube is difficult to measure directly. The local gas pressure in the ICP tube has been calibrated by comparing the experimental and simulation results of the maximum electron density. And on this basis, the electron density and electron temperature of ICP under the same gas pressure and absorbed power have been compared by experiments and simulations. The good agreement between the experimental and simulation data of these two key physical parameters fully verifies the validity of the ICP FEM simulation model. The experimental verification of the ICP FEM simulation model lays a foundation for further study of the distribution of various physical quantities and their variation with pressure and absorption power, which is beneficial for improving the level of ICP-related processes.