We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Power scaling in conventional broad-area (BA) lasers often leads to the operation of higher-order lateral modes, resulting in a multiple-lobe far-field profile with large divergence. Here, we report an advanced sawtooth waveguide (ASW) structure integrated onto a wide ridge waveguide. It strategically enhances the loss difference between higher-order modes and the fundamental mode, thereby facilitating high-power narrow-beam emission. Both optical simulations and experimental results illustrate the significant increase in additional scattering loss of the higher-order modes. The optimized ASW lasers achieve an impressive output power of 1.1 W at 4.6 A at room temperature, accompanied by a minimal full width at half maximum lateral divergence angle of 4.91°. Notably, the far-field divergence is reduced from 19.61° to 11.39° at the saturation current, showcasing a remarkable 42% improvement compared to conventional BA lasers. Moreover, the current dependence of divergence has been effectively improved by 38%, further confirming the consistent and effective lateral mode control capability offered by our design.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
This study aimed to evaluate the efficacy and safety of high-frequency oscillation ventilation combined with intermittent mandatory ventilation in infants with acute respiratory distress syndrome after congenital heart surgery.
Methods:
We retrospectively analysed the clinical data of 32 infants who were ventilated due to acute respiratory distress syndrome after congenital heart surgery between January, 2020 and January, 2022. We adopted high-frequency oscillation ventilation combined with intermittent mandatory ventilation as the rescue ventilation mode for infants who were failing conventional mechanical ventilation.
Results:
After rescue high-frequency oscillation ventilation combined with intermittent mandatory ventilation, the dynamic compliance (Cdyn), PaO2 and PaO2/FiO2 ratio of the infants improved compared with conventional mechanical ventilation (p < 0.05). Moreover, high-frequency oscillation ventilation combined with intermittent mandatory ventilation resulted in a significant decrease in arterial-alveolar oxygen difference (AaDO2), FiO2, and oxygenation index (p < 0.05). No significant effect on haemodynamic parameters was observed. Moreover, no serious complications occurred in the two groups.
Conclusion:
Rescue high-frequency oscillation ventilation combined with intermittent mandatory ventilation significantly improved oxygenation in infants who failed conventional mechanical ventilation for acute respiratory distress syndrome after congenital heart surgery. Thus, this strategy is considered safe and feasible. However, further studies must be conducted to confirm the efficacy and safety of high-frequency oscillation ventilation combined with intermittent mandatory ventilation as a rescue perioperative respiratory support strategy for CHD.
The aim of this study was to assess the current status of disease-related knowledge and to analyze the relationship among the general condition, illness perception, and psychological status of patients with coronavirus disease 2019 (COVID-19).
Methods:
A hospital-based cross-sectional study was conducted on 118 patients using convenience sampling. The general questionnaire, disease-related knowledge questionnaire of COVID-19, Illness Perception Questionnaire (IPQ), and Profile of Mood States (POMS) were used to measure the current status of participants.
Results:
The overall average score of the disease-related knowledge of patients with COVID-19 was (79.19 ± 14.25), the self-care situation was positively correlated with knowledge of prevention and control (r = 0.265; P = 0.004) and total score of disease-related knowledge (r = 0.206; P = 0.025); the degree of anxiety was negatively correlated with the knowledge of diagnosis and treatment (r = −0.182; P = 0.049). The score of disease-related knowledge was negatively correlated with negative cognition (volatility, consequences, emotional statements) and negative emotions (tension, fatigue, depression) (P < 0.05); positively correlated with positive cognition (disease coherence) and positive emotion (self-esteem) (P < 0.05).
Conclusions:
It was recommended that we should pay more attention to the elderly and low-income groups, and increase the knowledge about diagnosis and treatment of COVID-19 and self-care in the future health education for patients.
Amnestic mild cognitive impairment (aMCI) is characterized by delayed P300 latency and reduced grey matter (GM) volume, respectively. The relationship between the features in aMCI is unclear. This study was to investigate the relationship between the altered P300 latency and the GM volume in aMCI.
Methods
Thirty-four aMCI and 34 well-matched normal controls (NC) were studied using electroencephalogram during a visual oddball task and scanned with MRI. Both tests were finished in the same day.
Results
As compared with the NC group, the aMCI group exhibited delayed P300 latency in parietal cortex and reduced GM volumes in bilateral temporal pole and left hippocampus/parahippocampal gyrus. A remarkable negative correlation was found between delayed P300 latency and reduced left hippocampal volume only in the aMCI group. Interestingly, the mediating analysis found P300 latency significantly mediated the association between right supramarginal gyrus volume and information processing speed indicated by Stroop Color and Word Test A scores.
Conclusions
The association between delayed P300 latency and reduced left hippocampal volume in aMCI subjects suggests that reduced left hippocampal volume may be the potential structural basis of delayed P300 latency.
A 336-cm-long sediment core spanning the last 130 ka was recovered from Lake Xingkai on the northeastern margin of the East Asian summer monsoon domain to reveal the linkage between lacustrine depositional processes and environmental changes. Bayesian end member modeling analysis was conducted to partition and interpret the grain-size distributions of Lake Xingkai sediments. Our results suggest that the sedimentary system is characterized by three end members (EMs). EM1 and EM2, with a modal value of 13 and 10 μm, respectively, indicate the variation of local hydraulic conditions. EM3, with a modal value of 5 μm, reflects the background atmospheric dust loading. High atmospheric dust concentration generally occurred during Marine Isotope Stage (MIS) 5d, MIS 4, and early MIS 3, when the climate in the Asian dust source region was cold and dry. In contrast, low dust concentration prevailed during MIS 2, likely due to the southward shift of the westerlies driven by maximum ice volume in the high latitudes.
Disclosing the diagnosis of Alzheimer's disease (AD) to a patient is controversial. There is significant stigma associated with a diagnosis of AD or dementia in China, but the attitude of the society toward disclosure of such a diagnosis had not been formally evaluated prior to our study. Therefore, we aimed to evaluate the attitude toward disclosing an AD diagnosis to patients in China with cognitive impairment from their caregivers, and the factors that may affect their attitude.
Methods:
We designed a 17-item questionnaire and administered this questionnaire to caregivers, who accompanied patients with cognitive impairment or dementia in three major hospitals in Shanghai, China. The caregiver's attitude toward disclosing the diagnosis of AD as evaluated by the questionnaire was compared to that of disclosing the diagnosis of terminal cancer.
Results:
A majority (95.7%) of the 175 interviewed participants (mean 14.2 years of education received) wished to know their own diagnosis if they were diagnosed with AD, and 97.6% preferred the doctor to tell their family members if they were diagnosed with AD. If a family member of the participants suffered from AD, 82.9% preferred to have the diagnosis disclosed to the patient. “Cognitive impairment” was the most accepted term by caregivers to disclose AD diagnosis in Chinese.
Conclusion:
This study suggests most of the well-educated individuals in a Chinese urban area favored disclosing the diagnosis when they or their family members were diagnosed with AD.
This article outlines the evolution of a rescue team in responding to adenovirus prevention with a deployable field hospital. The local governments mobilized a shelter hospital and a rescue team consisting of 59 members to assist with rescue and response efforts after an epidemic outbreak of adenovirus. We describe and evaluate the challenges of preparing for deployment, field hospital maintenance, treatment mode, and primary treatment methods. The field hospital established at the rescue scene consisted of a medical command vehicle, a computed tomography shelter, an X-ray shelter, a special laboratory shelter, an oxygen and electricity supply vehicle, and epidemic prevention and protection equipment. The rescue team comprised paramedics, physicians, X-ray technicians, respiratory therapists, and logistical personnel. In 22 days, more than 3000 patients with suspected adenovirus infection underwent initial examinations. All patients were properly treated, and no deaths occurred. After emergency measures were implemented, the spread of adenovirus was eventually controlled. An emergency involving infectious diseases in less-developed regions demands the rapid development of a field facility with specialized medical personnel when local hospital facilities are either unavailable or unusable. An appropriate and detailed prearranged action plan is important for infectious diseases prevention. (Disaster Med Public Health Preparedness. 2018;12:109–114)
The corrosion behavior of 2099 Al–Li alloy in NaCl aqueous solutions with different concentrations (1.5, 3.5, and 5.0% in mass fraction) was investigated. Its corrosion resistance was evaluated using electrochemical measurements together with full immersion tests. The results showed that the 2099 Al–Li alloy possessed good corrosion resistance in NaCl aqueous solutions. Its corrosion rate increased with increasing chloride ion concentration. The main form of corrosion failure was pitting corrosion. The impurity containing sulfur leads to surface pitting. The oxide films that formed during the manufacturing process offer a good resistance to corrosion. They are likely to suffer separation, cracking, and drop-off when immersed in aggressive NaCl aqueous solution. The good corrosion susceptibility of the alloy may be attributed to homogeneous coherent nanoscale precipitates.
This work presents the preparation and characterization of N-doped TiO2 nanocrystals obtained by a solid-state reaction in vacuum with urea as the nitrogen source. The particle sizes of the products are smaller than 20 nm from the x-ray powder diffraction patterns and the transmission electron microscopy images. Different from the reported samples obtained in air or under dry N2 or NH3 gas flow, the doped nitrogen exists mainly as absorbed NOx groups but as smaller incorporated species in the nanocrystals, which is supported by the results from x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet–visible diffuse reflectance spectroscopy. Dependent on the nitrogen amount, the surface photovoltage (SPV) response reaches the maximum at the mediate molar ratio of 5:4 (urea to TiO2), which can be explained that proper nitrogen concentration can enhance the separation of the photogenerated carriers to improve the SPV intensity, but excess nitrogen can spread the impurity energy levels to narrow energy gaps, which reinforces the combination of the photogenerated electrons and holes and then decreases the SPV signal. The corresponding detailed discussion is also reported.
A natural number $n$ is called multiperfect or $k$-perfect for integer $k\ge 2$ if $\sigma (n)=kn$, where $\sigma (n)$ is the sum of the positive divisors of $n$. In this paper, we establish a theorem on odd multiperfect numbers analogous to Euler’s theorem on odd perfect numbers. We describe the divisibility of the Euler part of odd multiperfect numbers and characterise the forms of odd perfect numbers $n=\pi ^\alpha M^2$ such that $\pi \equiv \alpha ~({\rm mod}~8)$, where $\pi ^\alpha $ is the Euler factor of $n$. We also present some examples to show the nonexistence of odd perfect numbers of certain forms.
Let k≥2 be an integer. A natural number n is called k-perfect if σ(n)=kn. For any integer r≥1, we prove that the number of odd k-perfect numbers with at most r distinct prime factors is bounded by (k−1)4r3.
For the first time, we measured Raman spectra from Li(Al1-xCox)O2 (x = 0.5 to 0.9), a new cathode material for lithium batteries. Whereas LiCoO2 sintered at 400 °C develops a spinel structure, Li(Al1-xCox)O2 sintered at 380 °C is amorphous, as shown by its single broad Raman band. Li(Al1-xCox)O2 sintered at 700 or 900 °C shows Raman peaks independent of x that coincide with those from LiCoO2, indicating that Li(Al1-xCox)O2 has the α–NaFeO2 structure (space group R3m). Traces of the impurity phase Co3O4 appear in samples treated at 900 °C but not at 700 °C. The Raman peak widths exceed those in LiCoO2, suggesting that replacement of Co by Al increases disorder among the Li ions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.