We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Thin films of CuAlO2, CuGaO2 and AglnO2 with delafossite structure were prepared on sapphire substrates by pulsed laser deposition method. The resulting CuA102 thin films exhibited p-type conduction and the electrical conductivity at room temperature was 0.3 Scm−1. CuGaO2 thin films were grown epitaxially on μ-Al2O3 (001) surface and showed p-type conduction (conductivity at room temperature = 0.06 S cm−1). The optical band gap was estimated to be ∼3.5 eV for CuAlO2 or ∼3.6 eV for CuGaO2. On the other hand, the thin film of Sn doped AglnO2 exhibited n-type conduction. The optical band gap and electrical conductivity at room temperature were ∼4.1 eV and 70 S cm−1, respectively. The recent work demonstrates the validity of our chemical design concept for p- and n-type transparent conducting oxides, providing an opportunity for realization of transparent p-n junction using delafossite-type oxides.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.