We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Flow profiles are important determinants of fluid–vessel wall interactions. The aim of this study was to assess blood flow profiles in the aorta and pulmonary trunk in patients with transposition and different ventriculoarterial connection, and hence different mechanics of the coherent pump.
Methods
In all, 29 patients with operated transposition – concordant atrioventricular and discordant ventriculoarterial connection, and no other cardiac malformation – and eight healthy volunteers were assessed with cardiac magnetic resonance imaging: n = 17 patients after atrial redirection, with a morphologic right ventricle acting as systemic pump and a morphologic left ventricle connected to the pulmonary trunk, and n = 12 patients after the arterial switch procedure, with physiologic ventriculoarterial connections. Flow-sensitive four-dimensional velocity-encoded magnetic resonance imaging was used to analyse systolic flow patterns in the aorta and pulmonary trunk, relating to helical flow and vortex formation.
Results
In the aorta, overall helicity was present in healthy volunteers, but it was absent in all patients independent on the operation technique. Partial helices were observed in the ascending aorta of 58% of patients after arterial switch. In the pulmonary trunk, mostly parallel flow was seen in healthy volunteers and in patients after arterial switch, whereas vortex formation was present in 88% of patients after atrial redirection.
Conclusion
Blood flow patterns differ substantially between the groups. In addition to varying mechanics of the coherent pumping ventricles, the absent overall helicity in all patients might be explained by the missing looping of the aorta in transposition.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.