We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present study aims to develop and discuss an extension of hospital-acquired severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections (HA-SIs) definition which goes beyond the use of time parameters alone.
Design:
A confirmatory factor analysis was carried out to test a suitable definition for HA-SI.
Setting and Patients:
A two-center cohort study was carried out at two tertiary public hospitals in the German state of lower Saxony. The study involved a population of 366 laboratory-confirmed SARS-CoV-2-infected inpatients enrolled between March 2020 and August 2023.
Results:
The proposed model shows adequate fit indices (CFI.scaled = 0.959, RMSEA = 0.049). A descriptive comparison with existing classifications revealed strong features of our model, particularly its adaptability to specific regional outbreaks.
Conclusion:
The use of the regional incidence as a proxy variable to better define HA-SI cases represents a pragmatic and novel approach. The model aligns well with the latest scientific results in the literature. This work successfully unifies, within a single model, variables which the recent literature described as significant for the onset of HA-SI. Further potential improvements and adaptations of the model and its applications, such as automating the categorization process (in terms of hospital acquisition) or employing a comparable model for hospital-acquired influenza classification, are subjects open for discussion.
The number of hospitalized patients with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) does not differentiate between patients admitted due to coronavirus disease 2019 (COVID-19) (ie, primary cases) and incidental SARS-CoV-2 infection (ie, incidental cases). We developed an adaptable method to distinguish primary cases from incidental cases upon hospital admission.
Design:
Retrospective cohort study.
Setting:
Data were obtained from 3 German tertiary-care hospitals.
Patients:
The study included patients of all ages who tested positive for SARS-CoV-2 by a standard quantitative reverse-transcription polymerase chain reaction (RT-PCR) assay upon admission between January and June 2022.
Methods:
We present 2 distinct models: (1) a point-of-care model that can be used shortly after admission based on a limited range of parameters and (2) a more extended point-of-care model based on parameters that are available within the first 24–48 hours after admission. We used regression and tree-based classification models with internal and external validation.
Results:
In total, 1,150 patients were included (mean age, 49.5±28.5 years; 46% female; 40% primary cases). Both point-of-care models showed good discrimination with area under the curve (AUC) values of 0.80 and 0.87, respectively. As main predictors, we used admission diagnosis codes (ICD-10-GM), ward of admission, and for the extended model, we included viral load, need for oxygen, leucocyte count, and C-reactive protein.
Conclusions:
We propose 2 predictive algorithms based on routine clinical data that differentiate primary COVID-19 from incidental SARS-CoV-2 infection. These algorithms can provide a precise surveillance tool that can contribute to pandemic preparedness. They can easily be modified to be used in future pandemic, epidemic, and endemic situations all over the world.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.