We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tape rolls are often used for multiple patients despite recommendations by manufacturers for single-patient use. We developed a survey to query Health Care Personnel about their tape use practices and beliefs and uncovered behaviors that put patients at risk for hospital-acquired infections due to tape use.
Seismic imaging in 3-D holds great potential for improving our understanding of ice sheet structure and dynamics. Conducting 3-D imaging in remote areas is simplified by using lightweight and logistically straightforward sources. We report results from controlled seismic source tests carried out near the West Antarctic Ice Sheet Divide investigating the characteristics of two types of surface seismic sources, Poulter shots and detonating cord, for use in both 2-D and 3-D seismic surveys on glaciers. Both source types produced strong basal P-wave and S-wave reflections and multiples recorded in three components. The Poulter shots had a higher amplitude for low frequencies (<10 Hz) and comparable amplitude at high frequencies (>50 Hz) relative to the detonating cord. Amplitudes, frequencies, speed of source set-up, and cost all suggested Poulter shots to be the preferred surface source compared to detonating cord for future 2-D and 3-D seismic surveys on glaciers.
One-aminonaphthalene is sorbed onto the Na-saturated smectite clays, montmorillonite and hectorite, by cation exchange. In the presence of Fe3+, either in the clay structure or on the clay surface, sorption is followed by the formation of a blue-colored complex, with the continuous disappearance of aminonaphthalene from solution and the clay surface. The rate of aminonaphthalene disappearance decreases as pH increases. With time, four major products that appear to be structural isomers of N(4-aminonaphthyl)-l-naphthylamine are produced. A simplified model of this transformation is suggested to be the oxidation by Fe3+ of sorbed aminonaphthalene forming a radical cation-clay complex. A subsequent reaction between the radical-cation and a neutral aminonaphthalene molecule takes place, with the products being strongly sorbed to the clay surface.
Adsorption of uranyl to SWy-1 montmorillonite was evaluated experimentally and results were modeled to identify likely surface complexation reactions responsible for removal of uranyl from solution. Uranyl was contacted with SWy-1 montmorillonite in a NaCIO4 electrolyte solution at three ionic strengths (I = 0.001, 0.01, 0.1), at pH 4 to 8.5, in a N2(g) atmosphere. At low ionic strength, adsorption decreased from 95% at pH 4 to 75% at pH 6.8. At higher ionic strength, adsorption increased with pH from initial values less than 75%; adsorption edges for all ionic strengths coalesced above a pH of 7. A site-binding model was applied that treated SWy-1 as an aggregate of fixed-charge sites and edge sites analogous to gibbsite and silica. The concentration of fixed-charge sites was estimated as the cation exchange capacity, and non-preference exchange was assumed in calculating the contribution of fixed-charge sites to total uranyl adsorption. The concentration of edge sites was estimated by image analysis of transmission electron photomicrographs. Adsorption constants for uranyl binding to gibbsite and silica were determined by fitting to experimental data, and these adsorption constants were then used to simulate SWy-1 adsorption results. The best simulations were obtained with an ionization model in which AlOH2+ was the dominant aluminol surface species throughout the experimental range in pH. The pH-dependent aqueous speciation of uranyl was an important factor determining the magnitude of uranyl adsorption. At low ionic strength and low pH, adsorption by fixed-charge sites was predominant. The decrease in adsorption with increasing pH was caused by the formation of monovalent aqueous uranyl species, which were weakly bound to fixed-charge sites. At higher ionic strengths, competition with Na+ decreased the adsorption of UO22+ to fixed-charge sites. At higher pH, the most significant adsorption reactions were the binding of UO22+ to AlOH and of (UO2)3(OH)5+ to SiOH edge sites. Near-saturation of AlOH sites by UO22+ allowed significant contributions of SiOH sites to uranyl adsorption.
Cognitive training has shown promise for improving cognition in older adults. Aging involves a variety of neuroanatomical changes that may affect response to cognitive training. White matter hyperintensities (WMH) are one common age-related brain change, as evidenced by T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) MRI. WMH are associated with older age, suggestive of cerebral small vessel disease, and reflect decreased white matter integrity. Higher WMH load associates with reduced threshold for clinical expression of cognitive impairment and dementia. The effects of WMH on response to cognitive training interventions are relatively unknown. The current study assessed (a) proximal cognitive training performance following a 3-month randomized control trial and (b) the contribution of baseline whole-brain WMH load, defined as total lesion volume (TLV), on pre-post proximal training change.
Participants and Methods:
Sixty-two healthy older adults ages 65-84 completed either adaptive cognitive training (CT; n=31) or educational training control (ET; n=31) interventions. Participants assigned to CT completed 20 hours of attention/processing speed training and 20 hours of working memory training delivered through commercially-available Posit Science BrainHQ. ET participants completed 40 hours of educational videos. All participants also underwent sham or active transcranial direct current stimulation (tDCS) as an adjunctive intervention, although not a variable of interest in the current study. Multimodal MRI scans were acquired during the baseline visit. T1- and T2-weighted FLAIR images were processed using the Lesion Segmentation Tool (LST) for SPM12. The Lesion Prediction Algorithm of LST automatically segmented brain tissue and calculated lesion maps. A lesion threshold of 0.30 was applied to calculate TLV. A log transformation was applied to TLV to normalize the distribution of WMH. Repeated-measures analysis of covariance (RM-ANCOVA) assessed pre/post change in proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures in the CT group compared to their ET counterparts, controlling for age, sex, years of education and tDCS group. Linear regression assessed the effect of TLV on post-intervention proximal composite and sub-composite, controlling for baseline performance, intervention assignment, age, sex, years of education, multisite scanner differences, estimated total intracranial volume, and binarized cardiovascular disease risk.
Results:
RM-ANCOVA revealed two-way group*time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures compared to their ET counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on Processing Speed Training sub-composite (ß = -0.19, p = 0.04) but not other composite measures.
Conclusions:
These findings demonstrate the utility of cognitive training for improving postintervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appear to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Nonpathological aging has been linked to decline in both verbal and visuospatial memory abilities in older adults. Disruptions in resting-state functional connectivity within well-characterized, higherorder cognitive brain networks have also been coupled with poorer memory functioning in healthy older adults and in older adults with dementia. However, there is a paucity of research on the association between higherorder functional connectivity and verbal and visuospatial memory performance in the older adult population. The current study examines the association between resting-state functional connectivity within the cingulo-opercular network (CON), frontoparietal control network (FPCN), and default mode network (DMN) and verbal and visuospatial learning and memory in a large sample of healthy older adults. We hypothesized that greater within-network CON and FPCN functional connectivity would be associated with better immediate verbal and visuospatial memory recall. Additionally, we predicted that within-network DMN functional connectivity would be associated with improvements in delayed verbal and visuospatial memory recall. This study helps to glean insight into whether within-network CON, FPCN, or DMN functional connectivity is associated with verbal and visuospatial memory abilities in later life.
Participants and Methods:
330 healthy older adults between 65 and 89 years old (mean age = 71.6 ± 5.2) were recruited at the University of Florida (n = 222) and the University of Arizona (n = 108). Participants underwent resting-state fMRI and completed verbal memory (Hopkins Verbal Learning Test - Revised [HVLT-R]) and visuospatial memory (Brief Visuospatial Memory Test - Revised [BVMT-R]) measures. Immediate (total) and delayed recall scores on the HVLT-R and BVMT-R were calculated using each test manual’s scoring criteria. Learning ratios on the HVLT-R and BVMT-R were quantified by dividing the number of stimuli (verbal or visuospatial) learned between the first and third trials by the number of stimuli not recalled after the first learning trial. CONN Toolbox was used to extract average within-network connectivity values for CON, FPCN, and DMN. Hierarchical regressions were conducted, controlling for sex, race, ethnicity, years of education, number of invalid scans, and scanner site.
Results:
Greater CON connectivity was significantly associated with better HVLT-R immediate (total) recall (ß = 0.16, p = 0.01), HVLT-R learning ratio (ß = 0.16, p = 0.01), BVMT-R immediate (total) recall (ß = 0.14, p = 0.02), and BVMT-R delayed recall performance (ß = 0.15, p = 0.01). Greater FPCN connectivity was associated with better BVMT-R learning ratio (ß = 0.13, p = 0.04). HVLT-R delayed recall performance was not associated with connectivity in any network, and DMN connectivity was not significantly related to any measure.
Conclusions:
Connectivity within CON demonstrated a robust relationship with different components of memory function as well across verbal and visuospatial domains. In contrast, FPCN only evidenced a relationship with visuospatial learning, and DMN was not significantly associated with memory measures. These data suggest that CON may be a valuable target in longitudinal studies of age-related memory changes, but also a possible target in future non-invasive interventions to attenuate memory decline in older adults.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
Supplemental food from anthropogenic sources is a source of conflict with humans for many wildlife species. Food-seeking behaviours by black bears Ursus americanus and brown bears Ursus arctos can lead to property damage, human injury and mortality of the offending bears. Such conflicts are a well-known conservation management issue wherever people live in bear habitats. In contrast, the use of anthropogenic foods by the polar bear Ursus maritimus is less common historically but is a growing conservation and management issue across the Arctic. Here we present six case studies that illustrate how negative food-related interactions between humans and polar bears can become either chronic or ephemeral and unpredictable. Our examination suggests that attractants are an increasing problem, exacerbated by climate change-driven sea-ice losses that cause increased use of terrestrial habitats by bears. Growing human populations and increased human visitation increase the likelihood of human–polar bear conflict. Efforts to reduce food conditioning in polar bears include attractant management, proactive planning and adequate resources for northern communities to reduce conflicts and improve human safety. Permanent removal of unsecured sources of nutrition, to reduce food conditioning, should begin immediately at the local level as this will help to reduce polar bear mortality.
Introduction. Those coping with significant mental illness smoke at a high prevalence rate. Increasingly, behavioral health clinicians (BHCs) are being asked to provide tobacco-dependence interventions. In this context, it is important to measure their success at doing so. While the Working Alliance Inventory (WAI) is a well-established measurement of the effectiveness of therapeutic alliance, it is not specific to tobacco-dependence interventions. The Working Alliance Inventory for Tobacco (WAIT-3) has been found valid for tobacco cessation counselors (health providers who address tobacco), but its validity has not been established when BHCs address tobacco cessation as part of addressing all other needs of their patients. The purpose of this study was to examine the validity of the WAIT-3 in the context of behavioral health clinicians. Methods. Wisconsin Community Support Programs and Comprehensive Community Services programs distributed an anonymous, brief (14 items) survey to 1,930 of their clients. Measured variables included smoking status, behavioral intentions regarding quitting, and perception of help received from their clinic. Respondents could enter a chance to win a gift card as a thank you. Results. WAIT-3 scores were correlated with quitting-related variables. Compared to those with lower WAIT-3 scores, those with higher scores reported more attempts to quit, were more motivated to quit, were more likely to have a smoking cessation/reduction goal in their general treatment plan, had more conversations about quitting with their BHC, and wanted more help from their BHC to quit. Conclusions. The WAIT-3 may be a valid way to measure the effectiveness of BHCs to address the tobacco use of their patients. Next steps include establishing its predictive validity.
Increasing weed control costs and limited herbicide options threaten vegetable crop profitability. Traditional interrow mechanical cultivation is very effective at removing weeds between crop rows. However, weed control within the crop rows is necessary to establish the crop and prevent yield loss. Currently, many vegetable crops require hand weeding to remove weeds within the row that remain after traditional cultivation and herbicide use. Intelligent cultivators have come into commercial use to remove intrarow weeds and reduce cost of hand weeding. Intelligent cultivators currently on the market such as the Robovator, use pattern recognition to detect the crop row. These cultivators do not differentiate crops and weeds and do not work well among high weed populations. One approach to differentiate weeds is to place a machine-detectable mark or signal on the crop (i.e., the crop has the mark and the weed does not), thereby facilitating weed/crop differentiation. Lettuce and tomato plants were marked with labels and topical markers, then cultivated with an intelligent cultivator programmed to identify the markers. Results from field trials in marked tomato and lettuce found that the intelligent cultivator removed 90% more weeds from tomato and 66% more weeds from lettuce than standard cultivators without reducing yields. Accurate crop and weed differentiation described here resulted in a 45% to 48% reduction in hand-weeding time per hectare.
The science of studying diamond inclusions for understanding Earth history has developed significantly over the past decades, with new instrumentation and techniques applied to diamond sample archives revealing the stories contained within diamond inclusions. This chapter reviews what diamonds can tell us about the deep carbon cycle over the course of Earth’s history. It reviews how the geochemistry of diamonds and their inclusions inform us about the deep carbon cycle, the origin of the diamonds in Earth’s mantle, and the evolution of diamonds through time.
We describe the motivation and design details of the ‘Phase II’ upgrade of the Murchison Widefield Array radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the Murchison Widefield Array in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing array core. These new tiles enhance the surface brightness sensitivity of the array and will improve the ability of the Murchison Widefield Array to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ∼3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u, v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of Murchison Widefield Array continuum images. The upgrade retains all of the features that have underpinned the Murchison Widefield Array’s success (large field of view, snapshot image quality, and pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies.
We examine the role of irrigation in explaining U.S. agricultural gains post-1940. Specifically, we analyze how productivity and farm values changed in the western United States as a result of technological and policy changes that expanded access to ground and surface water. To statistically identify the effects, we compare counties based on their potential access to irrigation water defined by physical characteristics. We find areas with access to large streams and/or groundwater increase crop production relative to areas with only small streams by $19 billion annually, equivalent to 90 percent of the total annual increase in the western United States after 1940.
Multispectral images of leaf reflectance in the visible and near infrared region from 384 to 810 nm were used to establish the feasibility of developing a site-specific classifier to distinguish lettuce plants from weeds in California direct-seeded lettuce fields. An average crop vs. weed classification accuracy of 90.3% was obtained in a study of over 7,000 individual spectra representing 150 plants. The classifier utilized reflectance values from a small spatial area (3 mm diameter) of the leaf in order to allow the method to be robust to occlusion and to eliminate the need to identify leaf boundaries for shape-based machine vision recognition. Reflectance spectra were collected in the field using equipment suitable for real-time operation as a weed sensor in an autonomous system for automated weed control.