We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The intensity attenuation of a high-power laser is a frequent task in the measurements of optical science. Laser intensity can be attenuated by inserting an optical element, such as a partial reflector, polarizer or absorption filter. These devices are, however, not always easily applicable, especially in the case of ultra-high-power lasers, because they can alter the characteristics of a laser beam or become easily damaged. In this study, we demonstrated that the intensity of a laser beam could be effectively attenuated using a random pinhole attenuator (RPA), a device with randomly distributed pinholes, without changing the beam properties. With this device, a multi-PW laser beam was successfully attenuated and the focused beam profile was measured without any alterations of its characteristics. In addition, it was confirmed that the temporal profile of a laser pulse, including the spectral phase, was preserved. Consequently, the RPA possesses significant potential for a wide range of applications.
It has been suggested that schizophrenia involves dysconnectivity between functional brain regions and also the white matter structural disorganisation. Thus, diffusion tensor imaging (DTI) has widely been used for studying schizophrenia. However, most previous studies have used the region of interest (ROI) based approach. We, therefore, performed the probabilistic tractography method in this study to reveal the alterations of white matter tracts in the schizophrenia brain.
Methods:
A total of four different datasets consisted of 189 patients with schizophrenia and 213 healthy controls were investigated. We performed retrospective harmonisation of raw diffusion MRI data by dMRIharmonisation and used the FMRIB Software Library (FSL) for probabilistic tractography. The connectivities between different ROIs were then compared between patients and controls. Furthermore, we evaluated the relationship between the connection probabilities and the symptoms and cognitive measures in patients with schizophrenia.
Results:
After applying Bonferroni correction for multiple comparisons, 11 different tracts showed significant differences between patients with schizophrenia and healthy controls. Many of these tracts were associated with the basal ganglia or cortico-striatal structures, which aligns with the current literature highlighting striatal dysfunction. Moreover, we found that these tracts demonstrated statistically significant relationships with few cognitive measures related to language, executive function, or processing speed.
Conclusion:
We performed probabilistic tractography using a large, harmonised dataset of diffusion MRI data, which enhanced the statistical power of our study. It is important to note that most of the tracts identified in this study, particularly callosal and cortico-striatal streamlines, have been previously implicated in schizophrenia within the current literature. Further research with harmonised data focusing specifically on these brain regions could be recommended.
Although disconnectivity among brain regions has been one of the main hypotheses for schizophrenia, the superficial white matter (SWM) has received less attention in schizophrenia research than the deep white matter (DWM) owing to the challenge of consistent reconstruction across subjects.
Methods:
We obtained the diffusion magnetic resonance imaging (dMRI) data of 223 healthy controls and 143 patients with schizophrenia. After harmonising the raw dMRIs from three different studies, we performed whole-brain two-tensor tractography and fibre clustering on the tractography data. We compared the fractional anisotropy (FA) of white matter tracts between healthy controls and patients with schizophrenia. Spearman’s rho was adopted for the associations with clinical symptoms measured by the Positive and Negative Syndrome Scale (PANSS). The Bonferroni correction was used to adjust multiple testing.
Results:
Among the 33 DWM and 8 SWM tracts, patients with schizophrenia had a lower FA in 14 DWM and 4 SWM tracts than healthy controls, with small effect sizes. In the patient group, the FA deviations of the corticospinal and superficial–occipital tracts were negatively correlated with the PANSS negative score; however, this correlation was not evident after adjusting for multiple testing.
Conclusion:
We observed the structural impairments of both the DWM and SWM tracts in patients with schizophrenia. The SWM could be a potential target of interest in future research on neural biomarkers for schizophrenia.
Clozapine is generally considered as the treatment of choice for patients with treatment-resistant schizophrenia (TRS). However, its superiority has recently been questioned because olanzapine has been suggested as non-inferior to clozapine in its effectiveness.
Aims
We aimed to investigate the current status of clozapine prescriptions to identify any disparity between clinical guidelines and real-world practices.
Method
In this study, we utilised the Health Insurance Review Agency database in the Republic of Korea to investigate the real-world effectiveness of clozapine for patients with TRS. We compared differences in patient variables before and after clozapine administration, and we also performed survival analyses for both psychiatric admissions and emergency room visits among patients who used clozapine or olanzapine.
Results
This study investigated an incident cohort of 64 442 patients, and 2338 patients have been prescribed clozapine. Of these, 998 patients had TRS. In survival analysis, clozapine showed a worse survival rate for psychiatric admissions than olanzapine (hazard ratio 0.615). We also identified that clinicians tended to try a number of antipsychotics, as recommended, before starting patients on clozapine.
Conclusions
In conclusion, we found that olanzapine led to higher survival rates for psychiatric admissions than clozapine. Thus, considering the risk of serious adverse effects, clozapine may be used conservatively. Considering several studies advocating superior efficacy of clozapine, further studies with extensive data are recommended.
Current evidence on antipsychotic treatment and risk of psychiatric hospitalization in first-episode schizophrenia (FES) is largely based on the findings from randomized clinical trials (RCTs). However, the generalization of the findings to real-world patients is limited due to inherent caveats of the RCT. We aimed to investigate the treatment discontinuation and risk of psychiatric hospitalization using a nationwide population database.
Methods
The Health Insurance Review Agency database in South Korea was obtained, and the observation period started from 1 January 2009 to 31 December 2016. We defined the maintenance period as the period from 6-month after the diagnosis of schizophrenia, which is utilized for the main results. For a total of 44 396 patients with FES, a within-individual Cox regression model was used to compare the risk of the treatment discontinuation and psychiatric hospitalization.
Results
In group comparison, a long-acting injectable (LAI) antipsychotic group was associated with the lowest risk of the treatment discontinuation (0.64, 0.55–0.75) and psychiatric hospitalization (0.29, 0.22–0.38) in comparison with a typical antipsychotic group and no use, respectively. Among individual antipsychotics, the lowest risk of the treatment discontinuation was observed in LAI paliperidone (0.46, 0.37–0.66) compared to olanzapine. Clozapine was found to be the most effective antipsychotic in lowering the risk of psychiatric hospitalization as monotherapy compared to no use (0.23, 0.18–0.31).
Conclusions
In real-world patients with FES, LAI paliperidone and clozapine were associated with low treatment discontinuation and better effectiveness in lowering the risk of psychiatric hospitalization.
A disaster in the hospital is particularly serious and quite different from other ordinary disasters. This study aimed at analyzing the activity outcomes of a disaster medical assistance team (DMAT) for a fire disaster at the hospital.
Methods:
The data which was documented by a DMAT and emergent medical technicians of a fire department contained information about the patient’s characteristics, medical records, triage results, and the hospital which the patient was transferred from. Patients were categorized into four groups according to results of field triage using the simple triage and rapid treatment method.
Results:
DMAT arrived on the scene in 37 minutes. One hundred and thirty eight (138) patients were evacuated from the disaster scene. There were 25 patients (18.1%) in the Red group, 96 patients (69.6%) in the Yellow group, and 1 patient (0.7%) in the Green group. One patient died. There were 16 (11.6%) medical staff and hospital employees. The injury of the caregiver or the medical staff was more severe compared to the family protector.
Conclusions:
For an effective disaster-response system in hospital disasters, it is important to secure the safety of medical staff, to utilize available medical resources, to secure patients’ medical records, and to reorganize the DMAT dispatch system.
Early consciousness recovery after cardiac arrest (CA) is one of the most explicit and self-evident prognostic factors for clinical outcomes. We aimed to evaluate the prognostic value of electroencephalography (EEG) phenotypes according to the American Clinical Neurophysiology Society’s Critical Care EEG classification for predicting early recovery after CA.
Methods:
Consecutive patients admitted to the ICU after CA were enrolled. We analyzed Glasgow Coma Scale (GCS) score within 10 days after CA and evaluated mortality within 28 days according to EEG pattern subtype.
Results:
Among the total of 71 patients, 9 had periodic discharges (PDs) EEG pattern, 4 had rhythmic delta activity (RDA), 8 had spike-and-wave (SW), 22 had low voltage, 5 had burst suppression, and 23 had other EEG patterns. Initial GCS scores, GCS scores 3 days after CA (or 3 days after targeted temperature management [TTM]), and 10 days after CA (or 10 days after TTM) were significantly different among EEG subtypes (p < 0.001, respectively) (Table 2). GCS scores were significantly higher in RDA and the other EEG group compared to the PDs, SW, low voltage, and burst suppression groups (p < 0.001). Significant group × time interactions were observed for the follow-up period between EEG phenotypes (p < 0.001) demonstrating the most increase in the other EEG pattern group.
Conclusions:
Consciousness states were significantly worse in the PDs, SW, burst suppression, and low-voltage groups compared to the RDA and the other EEG pattern within 10 days after CA. The degree of consciousness recovery differed significantly by EEG pattern subtype within 10 days.
Hyperlipidaemia is a major cause of atherosclerosis and related CVD and can be prevented with natural substances. Previously, we reported that a novel Bacillus-fermented green tea (FGT) exerts anti-obesity and hypolipidaemic effects. This study further investigated the hypotriglyceridaemic and anti-obesogenic effects of FGT and its underlying mechanisms. FGT effectively inhibited pancreatic lipase activity in vitro (IC50, 0·48 mg/ml) and ameliorated postprandial lipaemia in rats (26 % reduction with 500 mg/kg FGT). In hypertriglyceridaemic hamsters, FGT administration significantly reduced plasma TAG levels. In mice, FGT administration (500 mg/kg) for 2 weeks augmented energy expenditure by 22 % through the induction of plasma serotonin, a neurotransmitter that modulates energy expenditure and mRNA expressions of lipid metabolism genes in peripheral tissues. Analysis of the gut microbiota showed that FGT reduced the proportion of the phylum Firmicutes in hamsters, which could further contribute to its anti-obesity effects. Collectively, these data demonstrate that FGT decreases plasma TAG levels via multiple mechanisms including inhibition of pancreatic lipase, augmentation of energy expenditure, induction of serotonin secretion and alteration of gut microbiota. These results suggest that FGT may be a useful natural agent for preventing hypertriglyceridaemia and obesity.
Δ14C values of leaves of deciduous trees provide a means to map the regional-scale fossil fuel ratio in the atmosphere. We collected a batch of ginkgo (Ginkgo biloba Linnaeus, a deciduous tree) leaf samples from across Korea in the month of July in both 2010 and 2011 to obtain the regional distribution of Δ14C. The Δ14C values of the samples were measured using accelerator mass spectrometry (AMS) at the Korea Institute of Geoscience and Mineral Resources (KIGAM). The average of the Δ14C values from clean air sites in Korea in 2011 measured slightly lower than the average of Δ14C values in 2010. Distribution maps of Δ14C of 2011 and 2010 in Korea were made based on a series of Δ14C values of ginkgo leaf samples from Korea using the Geostatistical and Spatial analyst tools in ESRI's ArcMap software. The distribution maps of Δ14C showed that Δ14C values in the western part of Korea are lower than those in the eastern part of Korea. This is because the western part of Korea is densely populated and contains many industrial complexes, and also because westerly winds from China, containing CO2 from fossil fuel use, blow into Korea. We compared the distribution maps of 2010 and 2011 and tried to find traces of the Fukushima power plant accident in Japan.
In this paper, we present technique to fabricate nanopatterns on Cu thin films via an electrochemical nanomachining (ECN) using an atomic force microscope (AFM). A conductive AFM cantilever tip (Pt/Ir5 coated) was used to form an electric field between tip and Cu substrate with applying a voltage pulse, resulting in the generation of an etched nanopattern. In order to precisely construct the nanopatterns, an ultra-short pulse was applied onto the Cu film through the AFM cantilever tip. The line width of the nanopatterns (the lateral dimension) increased with increased pulse amplitude, on-time, and frequency. The tip velocity effect on the nanopattern line width was also investigated that the line width is decreased with increasing tip velocity. Experimental results were compared with an equivalent electrochemical circuit model representing an ECN technique. The study described here provides important insight for fabricating nanopatterns precisely using electrochemical methods with an AFM cantilever tip.
We have propsed MgO/AZO bi-layer transparent conducting oxide (TCO) for thin film solar cells. From XRD analysis, it was observed that the full width at half maximum of AZO decreased when it was grown on MgO precursor. The Hall mobility of MgO/AZO bi-layer was 17.5cm2/Vs, whereas that of AZO was 20.8cm2/Vs. These indicated that the crystallinity of AZO decreased by employing MgO precursor. However, the haze (=total diffusive transmittance/total transmittance) characteristics of highly crystalline AZO was significantly improved by MgO precursor. The average haze in the visible region increased from 14.3 to 48.2%, and that in the NIR region increased from 6.3 to 18.9%. The reflectance of microcrystalline silicon solar cell was decreased and external quantum efficiency was significantly improved by applying MgO/AZO bi-layer TCO. The efficiency of microcrystalline silicon solar cell with MgO/AZO bi-layer front TCO was 6.66%, whereas the efficiency of one with AZO single TCO was 5.19%.
Rechargeable batteries are in high demand for future hybrid vehicles and electronic devices markets. Among various kinds of rechargeable batteries, Li-ion batteries are most popular for their obvious advantages of high energy and power density, ability to offer higher operating voltage, absence of memory effect, operation over a wider temperature range and showing a low self-discharge rate. Researchers have shown great deal of interest in developing new, improved electrode materials for Li-ion batteries leading to higher specific capacity, longer cycle life and extra safety. In the present study, we have shown that an anode prepared from interface-controlled multiwall carbon nanotubes (MWCNT), directly grown on copper current collectors, may be the best suitable anode for a Li-ion battery. The newly developed anode structure has shown very high specific capacity (almost 2.5 times as that of graphite), excellent rate capability, nil capacity degradation in long-cycle operation and introduced a higher level of safety by avoiding organic binders. Enhanced properties of the anode were well supported by the structural characterization and can be related to very high Li-ion intercalation on the walls of CNTs, as observed in HRTEM. This newly developed CNT-based anode structure is expected to offer appreciable advancement in performance of future Li-ion batteries.
A 1MV AMS was installed in KIGAM (Korea Institute of Geoscience and Mineral Resources). After 4 months of installation, the AMS started normal operation from January 2008. This multi-element AMS was developed by HVEE to measure 14C, 10Be, and 26Al. The results of an acceptance test demonstrate that this machine is capable of routine 14C age dating and of measurements of other radioisotopes in terms of accuracy and precision as well as the background level. After installation, an investigation aimed at determining the stable operating conditions was conducted, and background levels were determined to be as low as 10–15 for 14C and 10–14 for 10Be and 26Al.
To investigate the annual rate of tuberculosis (TB) infection among newly employed nurses using both tuberculin skin test (TST) and QuantiFERON-TB Gold (QFT-G; Cellestis Limited) assay.
Design.
A prospective cohort study involving newly employed nurses.
Setting.
A tertiary care university hospital in South Korea.
Methods.
All participants (n = 196) were tested with the TST and QFT-G assay at baseline. After 1 year, the TST and QFT-G assay were reperformed for subjects who had negative TST results at baseline and for all subjects, respectively.
Results.
The baseline TST and QFT-G assays were positive for 101 subjects (51.5%) and 28 subjects (14.3%), respectively; 22 subjects (11.2%) had positive results of both tests. Although the overall between-test agreement was 54.9% (κ = 0.151 [95% confidence interval, 0.047–0.245]), agreement improved to 78.5% (κ = 0.462 [95% confidence interval, 0.007–0.917]) for subjects who had not received bacille Calmette-Guérin vaccination. After 1 year, the TST yielded positive results for 16 (21.3%) of 75 nurses with negative baseline results, and the QFT-G assay yielded positive results for 21 (14.4%) of 146 subjects with negative baseline Results. Collectively, 5 subjects (3.0%) experienced conversion to positive results with both tests, and 32 subjects (18.9%) experienced conversion to positive results with one of the tests. Neither the employing hospital department nor exposure to patients with TB affected test conversion status.
Conclusions.
The poor overall agreement between TST and QFT-G results may have been caused by the confounding effect of bacille Calmette-Guérin vaccination. The annual risk of TB infection among newly employed nurses was at least 3% on the basis of results of both the TST and QFT-G test. Stricter preventive strategies against TB spread should be implemented in our hospital.
A novel route to organic-inorganic composites was described based on biomineralization of poly(ethylene glycol) (PEG)-based hydrogels. The 3-dimensional hydrogels were synthesized by radical crosslinking polymerization of poly(ethylene glycol fumarate) (PEGF) in the presence of ethylene glycol methacrylate phosphate (EGMP) as an apatite-nuclating monomer, acrylamide (AAm) as a composition-modulating comonomer, and potassium persulfate (PPS) as a radical initiator. We used the urea-mediated solution precipitation technique for biomineralization of hydrogels. The apatite grown on the surface and interior of the hydrogel was similar to biological apatites in the composition and crystalline structure. Powder x-ray diffraction (XRD) showed that the calcium phosphate crystalline platelets on hydrogels are preferentially aligned along the crystallographic c-axis direction. Inductively-coupled plasma mass spectroscopy (ICP-MS) analysis showed that the Ca/P molar ratio of apatites grown on the hydrogel template was found to be 1.60, which is identical to that of natural bones. In vitro cell experiments showed that the cell adhesion/proliferation on the mineralized hydrogel was more pronounced than on the pure polymer hydrogel.
The liquid lens based on MEMS technology can be an appropriate solution to improve the imaging capability of a capsule endoscope because it can be realized small enough and also consume negligible power. In this paper, a cylinder-type liquid lens was designed to minimize the dead area and then fabricated with MEMS technology combining the silicon thin-film process and the wafer bonding process where the multiple dielectric layer of Teflon, silicon nitride and thermal oxide was formed on the cylinder wall. The focal length of the lens module including the fabricated liquid lens was changed reproducibly as a function of the applied voltage. With the change of 30V in the applied bias, the focal length of the constructed lens module could be tuned in the range of about 42cm. The fabricated liquid lens was also proven to be small enough to be adopted in the capsule endoscope, which means the liquid lens can be utilized for the imaging capability improvement of the capsule endoscope.
Asian plantain (Plantago asiatica) essential oil (PAEO) contains multiple bioactive compounds, but its potential effects on lipid metabolism have not been examined. PAEO was found to be mostly composed of oxygenated monoterpenes, with linalool as the major component (82·5 %, w/w), measured using GC–MS. Incubation of 0–200 μg PAEO/ml with HepG2 cells for 24 h resulted in no significant toxicity. Incubation with 0·2 mg PAEO/ml altered the expression of LDL receptor (+83 %; P < 0·05) and 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase ( − 37 %; P < 0·05), as assessed using RT-PCR. LDL oxidation was markedly inhibited by PAEO treatment due to the prevalence of linalool compounds in PAEO. Oral administration of PAEO for 3 weeks in C57BL/6 mice significantly reduced plasma total cholesterol and TAG concentrations by 29 and 46 %, respectively. The mRNA (+58 %; P < 0·05), but not protein, levels of the LDL receptor were significantly higher, whereas both mRNA and protein levels of HMG-CoA reductase were significantly lower ( − 46 and − 11 %, respectively; P < 0·05) in the liver of PAEO-fed than of control mice. The mRNA levels of CYP7A1 were marginally reduced in HepG2 cells, but not in mouse liver after PAEO treatment. Thus, PAEO may have hypocholesterolaemic effects by altering the expression of HMG-CoA reductase. Reduced TAG and oxidised LDL may provide additional cardiovascular protective benefits.
Due to a rapid shrinkage in memory devices, backned of the line process experiences great difficulties, especially Al metallization. Furthermore, there is a continuous demands in low line resistance in order to promote device performances. In this article, Al damascene process is proposed as compared to Al patterning process, which suffers from inherent pattering issue at a fine pitch under 70nm. The most difficulties in the development of Al damascene process were to form a stable and void free Al in fine trench and to obtain scratch and corrosions free Al surface. In this study, 50nm beyond fill was successfully achieved by “bottom up growth” of CVD Al. For the process, CVD Al by using Methylpyrroridine Alane (MPA) precursor was deposited on a stacked film of CVD TiN and PVD TiN as a wetting layer, which was followed by PVD Al and reflow, then the Al surface was polished with colloidal silica based slurry.
In addition, electrical property of Al scheme and W scheme was compared with damascene pattern, along with which we demonstrated that around 36% decrease in parasitic capacitance is achievable by decrease of metal line height from 3500A to 1000A on simulation test implying that device performance could be enhanced.
Silicon nanocrystals were in situ grown in a silicon nitride film by plasma enhanced chemical vapor deposition. The size and structure of silicon nanocrystals were confirmed by high-resolution transmission electron microscopy. Depending on the size, the photoluminescence of silicon nanocrystals can be tuned from the near infrared (1.38 eV) to the ultraviolet (3.02 eV). The fitted photoluminescence peak energy as E(eV) = 1.16 + 11.8/d2 is an evidence for the quantum confinement effect in silicon nanocrystals. The results demonstrate that the band gap of silicon nanocrystals embedded in silicon nitride matrix was more effectively controlled for a wide range of luminescent wavelengths.