We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For the analysis of clinical effects, multiple imputation (MI) of missing data was shown to be unnecessary when using longitudinal linear mixed-models (LLM). It remains unclear whether this also applies to cost estimates from trial-based economic evaluations, that are generally right-skewed. Therefore, this study aimed to assess whether MI is required prior to LLM when analyzing longitudinal cost-effectiveness data.
Methods
Two-thousand complete datasets were simulated containing five time points. Incomplete datasets were generated with 10 percent, 25 percent, and 50 percent missing data in costs and effects, assuming a Missing At Random (MAR) mechanism. Statistical performance of six different methodological strategies was compared in terms of empirical bias (EB), root-mean-squared error (RMSE), and coverage rate (CR). Six strategies were compared: (i) LLM (LLM), (ii) MI prior to LLM (MI-LLM), (iii) mean imputation prior to LLM (M-LLM), (iv) complete-case analysis prior to seemingly unrelated regression (CCA-SUR), (v) MI prior to SUR (MI-SUR), and (vi) mean imputation prior to SUR (M-SUR). To evaluate the impact on the probability of cost-effectiveness at different willingness-to-pay [WTPs] thresholds, cost-effectiveness analyses were performed by applying the six strategies to two empirical datasets with 9% and 50% of missing data, respectively.
Results
For costs and effects, LLM, MI-LLM, and MI-SUR performed better than M-LLM, CCA-SUR, and M-SUR, as indicated by smaller EBs and RMSEs, as well as CRs closer to the nominal levels of 0.95. However, even though LLM, MI-LLM, and MI-SUR performed equally well for effects, MI-LLM and MI-SUR were found to perform better than LLM for costs at 10 percent and 25 percent missing data. At 50 percent missing data, all strategies resulted in relatively high EBs and RMSEs for costs. In both empirical datasets, LLM, MI-LLM, and MI-SUR all resulted in similar probabilities of cost-effectiveness at different WTPs.
Conclusions
When opting for using LLM for analyzing trial-based economic evaluation data, researchers are advised to multiply impute missing values first. Otherwise, MI-SUR may also be used.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.