We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The elemental compositions of zoned alkali feldspar megacrysts from the Karkonosze pluton have been analysed and Pb isotope ratios determined using LA-ICP-MS, EMPA and TIMS. The results are used to interpret the magmatic environments within which they crystallized. Growth zones in the megacrysts show fluctuating trace element patterns that reflect a systematic relationship between incompatible LREE and compatible Ba. Chemical gradients between zones in the cores and rims of the megacrysts are not accompanied by significant variation in initial Pb isotope composition. The nucleation and crystallization of the megacrysts is interpreted as having occurred in an environment of magmatic hybridization caused by mixing of mantle and crustal components in which effective homogenization of the Pb isotope composition preceded the onset of megacryst growth. The concentrations of LREE in alkali feldspar zones were used to reconstruct hypothetical melt compositions. Some of the zones appear to have crystallized in an homogenous magmatic environment having clear geochemical affinities with end-member magmas in the Karkonosze pluton, whereas others crystallized in heterogeneous domains of magma hybridization. With the exception of Nd, zones crystallized in more homogeneous magma show LREE fractionation under near-equilibrium conditions. Trace element abundances of megacrysts grown in dynamic, homogeneous magmatic environments of the Karkonosze pluton occasionally deviate from the predicted patterns and show LREE impoverishment.
Oxo-magnesio-hastingsite, ideally NaCa2(Mg2Fe3+3)(Al2Si6)O22O2, is a new anhydrous amphibole from the Deeti volcanic cone in the Gregory rift (northern Tanzania). The mineral occurs as megacrysts up to 12 cm in size in crystal-rich tuff. Oxo-magnesio-hastingsite is brown with a vitreous lustre and has a perfect {110} cleavage. The measured density is 3.19(1) g/cm3. Ferri-kaersutite is biaxial (–), α = 1.706 (2), β = 1.715(2), γ = 1.720(2) (Na light, 589 nm). 2V (calc.) = 73°. Dispersion: r > v, weak; orientation: Y = b; Z ^ c = 8°; pleochroism: strong, Z: dark brown, Y: brown, X: light brown. The average chemical formula of the mineral derived from electron microprobe analyses, Mössbauer spectroscopy and direct water determination is (Na0.67K0.33)Σ1.00(Ca1.87Na0.14Mn0.01)Σ2.02(Mg3.27Fe3+1.25Ti0.44Al0.08)Σ5.04(Al1.80Si6.20O22)(O1.40OH0.60)Σ2.00. It has monoclinic symmetry, space group C2/m and unit-cell parameters a = 9.8837(3), b = 18.0662(6), c = 5.3107(2) Å, b = 105.278(1)o, V = 914.77(5) Å3, Z = 2. The five strongest powder-diffraction lines [d in Å, (I/Io), hkl] are: 3.383 (62) (131), 2.708 (97) (151), 2.555 (100) (), 2.349 (29) (
) and 2.162 (36) (261). The isotopic composition of H and O, as well as the concentration of trace elements in oxo-magnesio-hastingsite suggest its formation from a melt originated from a mantle source metasomatized by slab-derived fluids.
Uteroplacental insufficiency resulting in intrauterine growth restriction has been associated with the development of cardiovascular disease, coronary heart disease and increased blood pressure, particularly in males. The molecular mechanisms that result in the programming of these phenotypes are not clear. This study investigated the expression of cardiac JAK/STAT signalling genes in growth restricted offspring born small due to uteroplacental insufficiency. Bilateral uterine vessel ligation was performed on day 18 of pregnancy to induce growth restriction (Restricted) or sham surgery (Control). Cardiac tissue at embryonic day (E) 20, postnatal day (PN) 1, PN7 and PN35 in male and female Wistar (WKY) rats (n=7–10 per group per age) was isolated and mRNA extracted. In the heart, there was an effect of age for males for all genes examined there was a decrease in expression after PN1. With females, JAK2 expression was significantly reduced after E20, while PI3K in females was increased at E30 and PN35. Further, mRNA expression was significantly altered in JAK/STAT signalling targets in Restricteds in a sex-specific manner. Compared with Controls, in males, JAK2 and STAT3 were significantly reduced in the Restricted, while in females SOCS3 was significantly increased and PI3K significantly decreased in the Restricted offspring. Finally, there were specific differences in the levels of gene expression within the JAK/STAT pathway when comparing males to females. Thus, growth restriction alters specific targets in the JAK/STAT signalling pathway, with altered JAK2 and STAT3 potentially contributing to the increased risk of cardiovascular disease in the growth restricted males.
Introduction
Enamel is the hard crystalline external covering of teeth, and has a mineral component that closely resembles hydroxyapatite (Boyde, 1989; Brudevold and Soremark, 1967). The chemical constituents of hydroxyapatite are tolerant to substitution by a range of trace elements, and are readily incorporated into enamel formation at the time of environmental exposure. The composition of sub-surface enamel is fixed before tooth emergence, and is therefore able to provide a retrospective and relatively permanent record of the trace elements absorbed during the period of enamel formation. The information locked within this deep enamel can provide evidence of early nutrition, residential mobility, and exposure to toxic metals. The incorporation of some trace elements into enamel hydroxyapatite also has the potential to affect susceptibility to caries. The trace element composition of enamel has a broad relevance in disciplines ranging from dentistry and child health (Brown et al., 2004; Dolphin et al., 2005) to forensics (Gulson et al., 1997a) and archaeology (Budd et al., 2000). Two trace elements of particular interest are lead (Pb) and zinc (Zn).
Lead toxicity remains a major public health concern, particularly in relation to its neurological effects on infants and young children (Bellinger et al., 1984; Goyer, 1996). Lead enters the body from contaminated food and drinking water, and inhaled air and dust, and accumulates gradually in calcified tissues. Non-food sources include lead emissions from gasoline, smelter emissions, lead-based paints and glazed food containers (Jarup, 2003).
Email your librarian or administrator to recommend adding this to your organisation's collection.