We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Depression and obesity are highly prevalent, and major impacts on public health frequently co-occur. Recently, we reported that having depression moderates the effect of the FTO gene, suggesting its implication in the association between depression and obesity.
Aims
To confirm these findings by investigating the FTO polymorphism rs9939609 in new cohorts, and subsequently in a meta-analysis.
Method
The sample consists of 6902 individuals with depression and 6799 controls from three replication cohorts and two original discovery cohorts. Linear regression models were performed to test for association between rs9939609 and body mass index (BMI), and for the interaction between rs9939609 and depression status for an effect on BMI. Fixed and random effects meta-analyses were performed using METASOFT.
Results
In the replication cohorts, we observed a significant interaction between FTO, BMI and depression with fixed effects meta-analysis (β=0.12, P = 2.7 × 10−4) and with the Han/Eskin random effects method (P = 1.4 × 10−7) but not with traditional random effects (β = 0.1, P = 0.35). When combined with the discovery cohorts, random effects meta-analysis also supports the interaction (β = 0.12, P = 0.027) being highly significant based on the Han/Eskin model (P = 6.9 × 10−8). On average, carriers of the risk allele who have depression have a 2.2% higher BMI for each risk allele, over and above the main effect of FTO.
Conclusions
This meta-analysis provides additional support for a significant interaction between FTO, depression and BMI, indicating that depression increases the effect of FTO on BMI. The findings provide a useful starting point in understanding the biological mechanism involved in the association between obesity and depression.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.