We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An increasing number of observational studies have reported associations between frailty and mental disorders, but the causality remains ambiguous.
Aims
To assess the bidirectional causal relationship between frailty and nine mental disorders.
Method
We conducted a bidirectional two-sample Mendelian randomisation on genome-wide association study summary data, to investigate causality between frailty and nine mental disorders. Causal effects were primarily estimated using inverse variance weighted method. Several secondary analyses were applied to verify the results. Cochran's Q-test and Mendelian randomisation Egger intercept were applied to evaluate heterogeneity and pleiotropy.
Results
Genetically determined frailty was significantly associated with increased risk of major depressive disorder (MDD) (odds ratio 1.86, 95% CI 1.36–2.53, P = 8.1 × 10−5), anxiety (odds ratio 2.76, 95% CI 1.56–4.90, P = 5.0 × 10−4), post-traumatic stress disorder (PTSD) (odds ratio 2.56, 95% CI 1.69–3.87, P = 9.9 × 10−6), neuroticism (β = 0.25, 95% CI 0.11–0.38, P = 3.3 × 10−4) and insomnia (β = 0.50, 95% CI 0.25–0.75, P = 1.1 × 10−4). Conversely, genetic liability to MDD, neuroticism, insomnia and suicide attempt significantly increased risk of frailty (MDD: β = 0.071, 95% CI 0.033–0.110, P = 2.8 × 10−4; neuroticism: β = 0.269, 95% CI 0.173–0.365, P = 3.4 × 10−8; insomnia: β = 0.160, 95% CI 0.141–0.179, P = 3.2 × 10−61; suicide attempt: β = 0.056, 95% CI 0.029–0.084, P = 3.4 × 10−5). There was a suggestive detrimental association of frailty on suicide attempt and an inverse relationship of subjective well-being on frailty.
Conclusions
Our findings show bidirectional causal associations between frailty and MDD, insomnia and neuroticism. Additionally, higher frailty levels are associated with anxiety and PTSD, and suicide attempts are correlated with increased frailty. Understanding these associations is crucial for the effective management of frailty and improvement of mental disorders.
Our study aimed to develop and validate a nomogram to assess talaromycosis risk in hospitalized HIV-positive patients. Prediction models were built using data from a multicentre retrospective cohort study in China. On the basis of the inclusion and exclusion criteria, we collected data from 1564 hospitalized HIV-positive patients in four hospitals from 2010 to 2019. Inpatients were randomly assigned to the training or validation group at a 7:3 ratio. To identify the potential risk factors for talaromycosis in HIV-infected patients, univariate and multivariate logistic regression analyses were conducted. Through multivariate logistic regression, we determined ten variables that were independent risk factors for talaromycosis in HIV-infected individuals. A nomogram was developed following the findings of the multivariate logistic regression analysis. For user convenience, a web-based nomogram calculator was also created. The nomogram demonstrated excellent discrimination in both the training and validation groups [area under the ROC curve (AUC) = 0.883 vs. 0.889] and good calibration. The results of the clinical impact curve (CIC) analysis and decision curve analysis (DCA) confirmed the clinical utility of the model. Clinicians will benefit from this simple, practical, and quantitative strategy to predict talaromycosis risk in HIV-infected patients and can implement appropriate interventions accordingly.
This study investigates the flow structures and combustion regimes in an axisymmetric cavity-based scramjet combustor with a total temperature of 1800 K and a high Reynolds number of approximately 1 × 107. The hydroxyl planar laser-induced fluorescence technique, along with the broadband flame emission and CH* chemiluminescence, is employed to visualize the instantaneous flame structure in the optically accessible cavity. The jet-wake flame stabilization mode is observed, with intense heat release occurring in the jet wake upstream of the cavity. A hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation approach is performed for the 0.18-equivalent-ratio case with a pressure-corrected flamelet/progress variable model. The combustion regime is identified mainly in the corrugated or wrinkled flamelet regime (approximately 102 < Da < 104, 103 < Ret < 105 where $Da$ is the Damköhler number and $Re_t$ is the turbulent Reynolds number). The combustion process is jointly dominated by supersonic combustion (which accounts for approximately 58 %) and subsonic combustion, although subsonic combustion has a higher heat release rate (peak value exceeding 1 × 109 J (m3s)−1). A partially premixed flame is observed, where the diffusion flame packages a considerable quantity of twisted premixed flame. The shockwave plays a critical role in generating vorticity by strengthening the volumetric expansion and baroclinic torque term, and it can facilitate the chemical reaction rates through the pressure and temperature surges, thereby enhancing the combustion. Combustion also shows a remarkable effect on the overall flow structures, and it drives alterations in the vorticity of the flow field. In turn, the turbulent flow facilitates the combustion and improves the flame stabilization by enhancing the reactant mixing and increasing the flame surface area.
Timing of food intake is an emerging aspect of nutrition; however, there is a lack of research accurately assessing food timing in the context of the circadian system. The study aimed to investigate the relation between food timing relative to clock time and endogenous circadian timing with adiposity and further explore sex differences in these associations among 151 young adults aged 18–25 years. Participants wore wrist actigraphy and documented sleep and food schedules in real time for 7 consecutive days. Circadian timing was determined by dim-light melatonin onset (DLMO). The duration between last eating occasion and DLMO (last EO-DLMO) was used to calculate the circadian timing of food intake. Adiposity was assessed using bioelectrical impedance analysis. Of the 151 participants, 133 were included in the statistical analysis finally. The results demonstrated that associations of adiposity with food timing relative to circadian timing rather than clock time among young adults living in real-world settings. Sex-stratified analyses revealed that associations between last EO-DLMO and adiposity were significant in females but not males. For females, each hour increase in last EO-DLMO was associated with higher BMI by 0·51 kg/m2 (P = 0·01), higher percent body fat by 1·05 % (P = 0·007), higher fat mass by 0·99 kg (P = 0·01) and higher visceral fat area by 4·75 cm2 (P = 0·02), whereas non-significant associations were present among males. The findings highlight the importance of considering the timing of food intake relative to endogenous circadian timing instead of only as clock time.
Nano-silicon has been regarded as the most promising anode material for next-generation lithium-ion batteries (LIBs). However, the preparation of nano-silicon suffers from high cost, complex procedures, and low yield, which hinders its commercial application. In this study, porous nano-silicon with particle sizes in the range of 50–100 nm was prepared through molten salt-assisted magnesiothermic reduction using porous nano-silica derived from clay minerals as the precursor. Through combining ball milling and acid activation, the synthesised nano-silica derived from montmorillonite exhibited smaller particle sizes (below 50 nm), higher specific surface area (647 m2 g–1), and total pore volume (0.71 cm3 g–1). This unique structure greatly facilitated the conversion efficiency of silica into nano-silicon by maximising the contact area between silica and magnesium powder and optimising the diffusion kinetics of magnesium atoms. When used as anodes in LIBs, the synthesised nano-silicon materials demonstrated a high specific capacity of up to 1222 mAh g–1 and an excellent capacity retention rate of 79% after 150 cycles at a current density of 0.5 A g–1. This method provides a novel approach for the cost-effective and large-scale production of nano-silicon materials for high-performance anodes.
The autonomous navigation and obstacle avoidance capabilities of autonomous underwater vehicles (AUVs) are essential for ensuring their safe navigation and long-term, efficient operation. However, the complexity of the marine environment poses significant challenges to safe and effective obstacle avoidance. To address this issue, this study proposes an AUV obstacle avoidance control algorithm based on offline reinforcement learning. This method adopts the Conservative Q-learning (CQL) algorithm, which is based on the Soft Actor-Critic (SAC) framework. It learns from obtained historical obstacle avoidance data and ultimately achieves a favorable obstacle avoidance control strategy. In this method, PID and SAC control algorithms are utilized to generate expert obstacle avoidance data to construct a diversified offline database. Additionally, based on the line-of-sight (LOS) guidance method and artificial potential field (APF) method, information regarding the distance and orientation of targets and obstacles is incorporated into the state space, and heading and obstacle avoidance reward terms are integrated into the reward function design. The algorithm successfully guides the AUV in autonomous navigation and dynamic obstacle avoidance in three-dimensional space. Furthermore, the algorithm exhibits a certain degree of anti-interference capability against uncertain disturbances and ocean currents, enhancing the safety and robustness of the AUV system. Simulation results fully demonstrate the feasibility and effectiveness of the intelligent obstacle avoidance method based on offline reinforcement learning. This study highlights the profound significance of offline reinforcement learning in enabling robust and reliable control systems for AUVs, paving the way for enhanced operational capabilities in challenging marine environments.
We report a numerical investigation of a previously noticed but less explored flow state transition in two-dimensional turbulent Rayleigh–Bénard convection. The simulations are performed in a square domain over a Rayleigh number range of $10^7 \leq Ra \leq 2 \times 10^{11}$ and a Prandtl number range of $0.25 \leq Pr \leq 20$. The transition is characterized by the emergence of multiple satellite eddies with increasing $Ra$, which orbit around and interact with the main vortex roll in the system. Consequently, the main roll is squeezed to a smaller size compared with the domain and wanders around in the bulk region irregularly and extensively. This is in sharp contrast to the flow state before the transition, which is featured by a domain-sized circulatory roll with its vortex centre ‘condensed’ near the domain's centre. Detailed velocity field analysis reveals that there exists an abrupt increase in the energy fluctuations of the Fourier modes during the transition. Based on this phase-transition-like signal, the critical condition for the transition is found to follow a scaling relation as $Ra_t \sim Pr^{1.41}$ where $Ra_t$ is the critical Rayleigh number for the transition. This scaling relation is quantitatively explained by a phenomenological model grounded on the bistability behaviour (i.e. spontaneous and stochastic switching between the two flow states) observed at the edge of the transition. The model can also account for the effects of aspect ratio on the transition reported in the literature (van der Poel et al., Phys. Fluids, vol. 24, 2012).
Autonomous underwater vehicles (AUVs) have played a pivotal role in advancing ocean exploration and exploitation. However, traditional AUVs face limitations when executing missions at minimal or near-zero forward velocities due to the ineffectiveness of their control surfaces, considerably constraining their potential applications. To address this challenge, this paper introduces an innovative vectored thruster system based on a 3RRUR parallel manipulator tailored for micro-sized AUVs. The incorporation of a vectored thruster enhances the performance of micro-sized AUVs when operating at minimal and low forward speeds. A comprehensive exploration of the kinematics of the thrust-vectoring mechanism has been undertaken through theoretical analysis and experimental validation. The findings from theoretical analysis and experimental confirmation unequivocally affirm the feasibility of the devised thrust-vectoring mechanism. The precise control of the vector device is studied using Physics-informed Neural Network and Model Predictive Control (PINN-MPC). Through the adoption of this pioneering thrust-vectoring mechanism rooted in the 3RRUR parallel manipulator, AUVs can efficiently and effectively generate the requisite motion for thrust-vectoring propulsion, overcoming the limitations of traditional AUVs and expanding their potential applications across various domains.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.
A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3–4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.
All-fiber coherent beam combiners based on the self-imaging effect can achieve a near-perfect single laser beam, which can provide a promising way to overcome the power limitation of a single-fiber laser. One of the key points is combining efficiency, which is determined by various mismatches during fabrication. A theoretical model has been built, and the mismatch error is analyzed numerically for the first time. The mismatch errors have been numerically studied with the beam quality and combining efficiency being chosen as the evaluation criteria. The tolerance of each mismatch error for causing 1% loss is calculated to guide the design of the beam combiners. The simulation results are consistent with the experimental results, which show that the mismatch error of the square-core fiber is the main cause of the efficiency loss. The results can provide useful guidance for the fabrication of all-fiber coherent beam combiners.
Many schools have readjusted their teaching management strategies in order to implement the principle of “Sanquan education”, that is, whole-process education and all-round education. The purpose of this study is to understand the influence of Sanquan teaching concept on the identification of students with functional cognitive impairment.
Subjects and Methods
Patients with cognitive impairment in a school were selected as research objects and randomly divided into a control group and an experimental group. The control group received the traditional teaching management mode, while the experimental group implemented the new teaching management mode that fully implemented the three-in-one education policy. The Montreal Cognitive Assessment Scale was used for assessment and SPSS22.0 was used for statistical analysis.
Results
After 6 months of experiment, the control group’s cognitive rating scale score changed from 11 to 13 points, while the experimental group’s cognitive rating scale score changed from 12 to 26 points. In the experimental group, the symptoms of patients with functional cognitive impairment were significantly alleviated (P<0.05). The experimental results show that the introduction of the concept of Sanquan education into teaching management has a significant impact on students’ recognition of functional cognitive impairment.
Conclusions
The introduction of the “ Sanquan education” policy in school teaching management can have a positive impact on the identification of students with functional cognitive impairment, reduce the symptoms of patients, and provide a potential therapeutic method with research significance. The results of this study provide a reference for school management and treatment of mental illness.
Learning phobia is a special phobia and mental disorder, which is a long-term behavior caused by psychological emotions such as anxiety, depression, etc. The current education model is mainly biased towards the test, paying too much attention to the test results, but ignoring the learning process in the classroom. This also causes the classroom to be too boring, which seriously affects the students’ interest in learning. Therefore, the key to improving students’ fear of learning lies in the reform of teaching mode.
Subjects and Methods
Educational psychology is a course of both theory and application, which helps to relieve students’ academic pressure and improve their overall quality. Therefore, based on educational psychology, this study makes an in-depth analysis of the influence of the reformed teaching mode on students’ learning phobia. Fifty students with learning phobia were randomly selected from a school. They were divided into general teaching group and teaching reform group, with 25 people in each group. SPSS 23.0 software was used to analyze the changes of students’ learning phobia.
Results
Before the experiment, the baseline data of all students had no statistical significance (P>0.05). After intervention, the learning phobia of teaching reform group was significantly improved compared with that of general teaching group, and the difference was statistically significant (P<0.05).
Conclusions
The use of appropriate teaching mode can naturally improve students’ interest in learning, but also be more conducive to students’ physical and mental health growth.
Aging plays a crucial role in the mechanisms of the impacts of genetic and environmental factors on blood pressure and serum lipids. However, to our knowledge, how the influence of genetic and environmental factors on the correlation between blood pressure and serum lipids changes with age remains to be determined. In this study, data from the Chinese National Twin Registry (CNTR) were used. Resting blood pressure, including systolic and diastolic blood pressure (SBP and DBP), and fasting serum lipids, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TGs) were measured in 2378 participants (1189 twin pairs). Univariate and bivariate structural equation models examined the genetic and environmental influences on blood pressure and serum lipids among three age groups. All phenotypes showed moderate to high heritability (0.37–0.59) and moderate unique environmental variance (0.30–0.44). The heritability of all phenotypes showed a decreasing trend with age. Among all phenotypes, SBP and DBP showed a significant monotonic decreasing trend. For phenotype-phenotype pairs, the phenotypic correlation (Rph) of each pair ranged from −0.04 to 0.23, and the additive genetic correlation (Ra) ranged from 0.00 to 0.36. For TC&SBP, TC&DBP, TG&SBP and TGs&DBP, both the Rph and Ra declined with age, and the Ra difference between the young group and the older adult group is statistically significant (p < .05). The unique environmental correlation (Re) of each pair did not follow any pattern with age and remained relatively stable with age. In summary, we observed that the heritability of blood pressure was affected by age. Moreover, blood pressure and serum lipids shared common genetic backgrounds, and age had an impact on the phenotypic correlation and genetic correlations.
Major depressive disorder (MDD) is clinically documented to co-occur with multiple gastrointestinal disorders (GID), but the potential causal relationship between them remains unclear. We aimed to evaluate the potential causal relationship of MDD with 4 GID [gastroesophageal reflux disease (GERD), irritable bowel syndrome (IBS), peptic ulcer disease (PUD), and non-alcoholic fatty liver disease (NAFLD)] using a two-sample Mendelian randomization (MR) design.
Methods
We obtained genome-wide association data for MDD from a meta-analysis (N = 480 359), and for GID from the UK Biobank (N ranges: 332 601–486 601) and FinnGen (N ranges: 187 028–218 792) among individuals of European ancestry. Our primary method was inverse-variance weighted (IVW) MR, with a series of sensitivity analyses to test the hypothesis of MR. Individual study estimates were pooled using fixed-effect meta-analysis.
Results
Meta-analyses IVW MR found evidence that genetically predicted MDD may increase the risk of GERD, IBS, PUD and NAFLD. Additionally, reverse MR found evidence of genetically predicted GERD or IBS may increase the risk of MDD.
Conclusions
Genetically predicted MDD may increase the risk of GERD, IBS, PUD and NAFLD. Genetically predicted GERD or IBS may increase the risk of MDD. The findings may help elucidate the mechanisms underlying the co-morbidity of MDD and GID. Focusing on GID symptoms in patients with MDD and emotional problems in patients with GID is important for the clinical management.
The concentration of suspended particulate organic carbon (POC) and its carbon isotopic composition (δ13CPOC) were analysed in this study with the aim of exploring the sources and factors influencing levels of POC in the surface water around the Antarctic Peninsula. The scanning electron microscopy results suggest that diatom particles formed the main component of suspended particulate matter, indicating that POC was mainly from in situ primary production. The high concentrations of chlorophyll a and POC in sea water mainly occurred in nearshore and sea-ice edge regions, which might be controlled by nutrient and reactive iron inputs stemming from sea-ice melting. The δ13CPOC in the study area is significantly lower than that in low-latitude waters, with a range of -31.8‰ to -22.8‰ (mean -28.9‰), which was controlled by the high CO2 concentration in the Southern Ocean and might be influenced by phytoplankton growth rates and assemblages. This study helps us to understand material cycling in the Antarctic region under the conditions of global climate change.
Ovarian cancer is the most lethal female reproductive system tumour. Despite the great advances in surgery and systemic chemotherapy over the past two decades, almost all patients in stages III and IV relapse and develop resistance to chemotherapy after first-line treatment. Ovarian cancer has an extraordinarily complex immunosuppressive tumour microenvironment in which immune checkpoints negatively regulate T cells activation and weaken antitumour immune responses by delivering immunosuppressive signals. Therefore, inhibition of immune checkpoints can break down the state of immunosuppression. Indeed, Immune checkpoint inhibitors (ICIs) have revolutionised the therapeutic landscape of many solid tumours. However, ICIs have yielded modest benefits in ovarian cancer. Therefore, a more comprehensive understanding of the mechanistic basis of the immune checkpoints is needed to improve the efficacy of ICIs in ovarian cancer. In this review, we systematically introduce the mechanisms and expression of immune checkpoints in ovarian cancer. Moreover, this review summarises recent updates regarding ICI monotherapy or combined with other small-molecule-targeted agents in ovarian cancer.
It is crucial to understand the genetic mechanisms and biological pathways underlying the relationship between obesity and serum lipid levels. Structural equation models (SEMs) were constructed to calculate heritability for body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the genetic connections between BMI and the four classes of lipids using 1197 pairs of twins from the Chinese National Twin Registry (CNTR). Bivariate genomewide association studies (GWAS) were performed to identify genetic variants associated with BMI and lipids using the records of 457 individuals, and the results were further validated in 289 individuals. The genetic background affecting BMI may differ by gender, and the heritability of males and females was 71% (95% CI [.66, .75]) and 39% (95% CI [.15, .71]) respectively. BMI was positively correlated with TC, TG and LDL-C in phenotypic and genetic correlation, while negatively correlated with HDL-C. There were gender differences in the correlation between BMI and lipids. Bivariate GWAS analysis and validation stage found 7 genes (LOC105378740, LINC02506, CSMD1, MELK, FAM81A, ERAL1 and MIR144) that were possibly related to BMI and lipid levels. The significant biological pathways were the regulation of cholesterol reverse transport and the regulation of high-density lipoprotein particle clearance (p < .001). BMI and blood lipid levels were affected by genetic factors, and they were genetically correlated. There might be gender differences in their genetic correlation. Bivariate GWAS analysis found MIR144 gene and its related biological pathways may influence obesity and lipid levels.
The northern Alxa region is located in the central segment of the southern Central Asian Orogenic Belt. Many controversies and deficiencies still exist regarding the magma source characteristics, petrogenesis and tectonic regimes during the late Palaeozoic – early Mesozoic period within this region. This study presents whole-rock compositions and zircon U–Pb and Lu–Hf isotopic data for three early Mesozoic I- and A-type granitic plutons occurring in the northern Alxa region. The Haerchaoenji and Chahanhada I-type granitoids yielded zircon 206Pb–238U ages of 245 ± 5 Ma and 245 ± 2 Ma, respectively. The variable positive zircon ϵHf(t) values between +1.8 and +11.8, with young TDM ages of 425–837 Ma, indicate that these I-type granitoids were mainly derived from juvenile crustal materials. The Wulantaolegai pluton has a zircon 206Pb–238U age of 237 ± 2 Ma and is classified as having high-K calc-alkaline A-type affinity. Furthermore, the positive zircon ϵHf(t) values of the Wulantaolegai granite range from +3.3 to +8.7 with young TDM ages of 545–778 Ma, suggesting the involvement of a juvenile crustal source as well. Furthermore, the major-element compositions of the Chahanhada and Wulantaolegai granites suggest the input of metasedimentary components. Geochemically, the Haerchaoenji and Chahanhada I-type granitoids show an arc affinity, while the Wulantaolegai granite exhibits a post-collisional affinity. However, with regional data, we suggest that the Haerchaoenji and Chahanhada I-type granitoids were also emplaced in a post-collisional setting, and the arc affinity was probably inherited from recycled subduction-related materials. These lines of evidence obtained in this study enable us to argue that the Palaeo-Asian Ocean in the central segment of the Central Asian Orogenic Belt closed before Middle Triassic time.
Sepsis is a clinical syndrome characterised by a severe disorder of pathophysiology caused by infection of pathogenic micro-organisms. The addition of antioxidant micronutrient therapies such as thiamine to sepsis treatment remains controversial. This study explored the effect of thiamine on the prognosis of patients with sepsis. This study was a retrospective study involving patients with sepsis from the Medical Information Mart for Intensive Care IV. Patients were divided into two groups, the thiamine received group (TR) and the thiamine unreceived group (TUR), according to whether they were supplemented with thiamin via intravenous while in the intensive care unit (ICU). The primary outcome was ICU mortality. The association between thiamine and outcome was analysed using the Cox proportional hazards regression model, propensity score matching (PSM), generalised boosted model-based inverse probability of treatment weighting (IPTW) and doubly robust estimation. A total of 11 553 sepsis patients were enrolled in this study. After controlling for potential confounders using Cox regression models, the TR group had a statistically significantly lower ICU mortality risk than the TUR group. The hazard ratio of ICU mortality for the TR group was 0·80 (95 % CI 0·70, 0·93). We obtained the same results after using PSM, IPTW and doubly robust estimation. Supplementation with thiamine has a beneficial effect on the prognosis of patients with sepsis. More randomised controlled trials are needed to confirm the effectiveness of thiamine supplementation in the treatment of sepsis.