We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Environment has long been known to have an impact on the evolution of galaxies, but disentangling its impact from mass evolution requires the careful analysis of statistically significant samples. By implementing cutting-edge visualisation methods to test and validate group-finding algorithms, we utilise a mass-complete sample of galaxies to $z \lt 0.1$ comprised of spectroscopic redshifts from prominent surveys such as the 2-degree Field Galaxy Redshift Survey and the Galaxy and Mass Assembly Survey. Utilising our group finding methods, we find 1 413 galaxy groups made up of 8 990 galaxies corresponding to 36% of galaxies associated with group environments. We also search for close pairs, with separations of $r_\mathrm{sep} \lt 50$$\text{h}^{-1}\text{kpc}$ and $v_\mathrm{sep} \lt 500 \: \text{km s}^{-1}$ within our sample and further classified them into major ($M_{sec}/M_{prim} \leq$ 0.25) and minor ($M_{sec}/M_{prim} \gt $ 0.25) pairs. To examine the impact of environmental factors, we employ bespoke WISE photometry, which facilitates accurate measurements of stellar mass and star formation rates and hence the best possible description of the variation of galaxy properties as a function of the local environment. Our analysis, employing a derived star-forming main sequence relation, reveals that star-formation (SF) within galaxies are pre-processed as a function of group membership. This is evident from the evolution of the star-forming and quenched population of galaxies. We see an increase in the fraction of quiescent galaxies relative to the field as group membership increases, and this excess of quenched galaxies relative to the field is later quantified through the use of the environmental quenching efficiency ($\varepsilon_{env}$) metric. Within the star-forming population, we observe SF pre-processing with the relative difference in specific star formation rates ($\Delta sSFR$), where we see a net decrease in SF as group membership increases, particularly at larger stellar masses. We again quantify this change within the SF population with our star formation deficiency ($\varepsilon_{SFD}$) metric. Our sample of close pairs at low stellar masses exhibit enhanced star formation efficiencies compared to the field, and at larger stellar mass ranges show large deficiencies. Separating the close pairs into major/minors and primary/secondaries reveals SF enhancements projected separation decreases within the minor pairs, this effect is even more pronounced within minor primaries. This research emphasises the importance of carefully studying the properties of galaxies within group environments to better understand the pre-processing of SF within galaxies. Our results show that the small-scale environments of galaxies influence star-forming properties even when stellar masses are kept constant. This demonstrates that galaxies do not evolve in isolation over cosmic time but are shaped by a complex interaction between their internal dynamics and external influences.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.
Documented evidence of fungi associated with Mesozoic ferns is exceedingly rare. Three different types of fungal remains occur in a portion of a small, permineralised fern stem of uncertain systematic affinities from the Triassic of Germany. Exquisite preservation of all internal tissues made it possible to map the spatial distribution of the fungi in several longitudinal and transverse sections. Narrow, intracellular hyphae extend through the entire cortex, while wide hyphae are concentrated in the cortical intercellular system adjacent to the stele and leaf traces. Hyphal swellings occur in the phloem and adjacent cortex, while moniliform hyphae (or chains of conidia) are present exclusively in parenchyma adjacent to the stele. No host response is recognisable, but host tissue preservation suggests that the fern was alive during fungal colonisation. The highest concentration of fungal remains occurs close to the stele and leaf traces, suggesting that the fungi either utilised the vascular tissues as an infection/colonisation pathway or extracted nutrients from these tissues. This study presents the first depiction of fungal distribution throughout a larger portion of a fossil plant. Although distribution maps are useful tools in assessing fungal associations in relatively small, fossil plants, preparing similar maps for larger and more complex fossils would certainly be difficult and extremely arduous.
A conspicuous silicified microfossil, Frankbaronia polyspora n. gen. n. sp., occurs in plant litter and as an inhabitant of microbial mats from the Lower Devonian Rhynie chert, Aberdeenshire, Scotland. Specimens are elongate-cylindrical, oval, or spherical, thin-walled, and may possess conical or column-like surface projections. Most specimens occur isolated, some are arranged in pairs or short chains. Each specimen contains several small spheres, each in turn with a (sub)centric opaque inclusion. Immature specimens indicate that ontogenesis in this fossil includes the formation of a single centric body of opaque material that subsequently is apportioned among the developing small spheres. Frankbaronia polyspora is quite similar in size and morphology to the oogonia containing oospores seen in certain extant members of the Peronosporomycetes. The Rhynie chert is known to contain the oldest fossil evidence of the Peronosporomycetes but only a single form (Hassiella monospora) has previously been documented. The discovery of a second putative representative of this group of organisms proves that this paleoecosystem is still an important source of new information on the paleodiversity of microbial life.
The Matoniaceae is one of the most ancient lineages of extant ferns, with a fossil record that extends from the early Mesozoic. Currently they are considered to be a systematically isolated group that occupies a basal position in the phylogeny of leptosporangiate ferns. Although the extant taxa of Matoniaceae are today restricted to the Malaysian archipelago, a diverse assemblage of matoniaceous ferns occurred on every continent, including Antarctica, during the Mesozoic. Here we describe anatomically preserved, detached fern sori and sporangia from the Fremouw Formation with a combination of characters that affiliates them with the Matoniaceae. Sori are peltate with more than 25 crowded sporangia that display simple maturation. The indusium is multiseriate and centrally attached to a massive, vascularized receptacle. Sporangia are globose to ovoid with vertical, meandering, incomplete annuli, and are helically attached to the receptacle in three to four gyres. This report places this fern as the earliest known occurrence of the Matoniaceae in the fossil record. Characters observed in the sori offer insights regarding organizational patterns of reproductive structures in the family. Additionally, the presence of a peltate indusium in the earliest known representative of the family contradicts the hypothesized evolutionary sequence in development of this structure in the family.
Chert and silicified wood from the Permian through Cretaceous of Antarctica contain abundant information on fungal diversity and plant–fungal interactions. The chert deposits represent a particularly interesting setting for the study of plant–fungal interactions because they preserve remains of distinctive high latitude forest ecosystems with polar light regimes that underwent a profound climate change from icehouse to greenhouse conditions. Moreover, some of the cherts and wood show the predominance of extinct groups of seed plants (e.g. Glossopteridales, Corystospermales). Over the past 30 years, documentation of fossil fungi from Antarctica has shifted from a by-product of plant descriptive studies to a focused research effort. This paper critically reviews the published record of fungi and fungal associations and interactions in the late Palaeozoic and Mesozoic cherts and silicified wood from Antarctica; certain fungal palynomorphs and fungal remains associated with adpression fossils and cuticles are also considered. Evidence of mutualistic (mycorrhizal), parasitic and saprotrophic fungi associated with plant roots, stems, leaves and reproductive organs is presented, together with fungi occurring within the peat matrix and animal–fungus interactions. Special attention is paid to the morphology of the fungi, their systematic position and features that can be used to infer fungal nutritional modes.
A new damping mechanism for vertically-sheared inertial motions is described involving an inertia–gravity wave that oscillates at half the inertial frequency, $f$, and that grows at the expense of inertial shear. This parametric subharmonic instability forms in baroclinic, geostrophic currents where thermal wind shear, by reducing the potential vorticity of the fluid, allows inertia–gravity waves with frequencies less than $f$. A stability analysis and numerical simulations are used to study the instability criterion, energetics, and finite-amplitude behaviour of the instability. For a flow with uniform shear and stratification, parametric subharmonic instability develops when the Richardson number of the geostrophic current nears $Ri_{PSI}=4/3+\gamma \cos \phi $, where $\gamma $ is the ratio of the inertial to thermal wind shear magnitude and $\phi $ is the angle between the inertial and thermal wind shears at the initial time. Inertial shear enters the instability criterion because it can also modify the potential vorticity and hence the minimum frequency of inertia–gravity waves. When this criterion is met, inertia–gravity waves with a frequency $f/2$ and with flow parallel to isopycnals amplify, extracting kinetic energy from the inertial shear through shear production. The solutions of the numerical simulations are consistent with these predictions and additionally show that finite-amplitude parametric subharmonic instability both damps inertial shear and is itself damped by secondary shear instabilities. In this way, parametric subharmonic instability opens a pathway to turbulence where kinetic energy in inertial shear is transferred to small scales and dissipated.
Surgical site infection (SSI) after total hip and knee arthroplasty is a common postoperative complication. We sought to determine readmission rates and costs for total hip and knee arthroplasty complicated by SSI.
Design.
The Thomson Reuters MarketScan database was searched for patients who underwent knee or hip arthroplasty in 2007. From these data, patients who received a diagnosis of SSI and were readmitted after diagnosis were identified.
Setting.
A population of 31 to 45 million individuals receiving insurance coverage. Patients who underwent knee or hip arthroplasty who experienced a hospitalization for SSI in the year after surgery were analyzed.
Outcome Measures.
Total readmission rates and costs per readmission at 30, 60, and 90 days and 1 year after diagnosis of SSI.
Results.
Of the 76,289 case patients with hip or knee replacement in 2007, 1,026 (1.3%) had a hospitalization for SSI within the year after surgery. Among these patients, 310 (30.2%) were subsequently rehospitalized in the year after initial hospitalization specifically due to SSI-related issues. These rehospitalizations were associated with a mean hospital stay of 7.4 ± 11.4 days and a median cost of $20,001 (interquartile range [IQR], $14,057-$30,551). A total of 517 subjects had a subsequent “all-cause” hospitalization during the year after SSI. These rehospitalizations were associated with a mean hospital stay of 6.4 ± 10.4 days and a median cost of $19,870 (IQR, $13,913-$29,728).
Conclusions.
Readmissions during the year after SSI diagnosis accounted for 1,072 hospital admissions and cost over $25.5 million. These readmissions are costly and might be a future target for decreased reimbursement.
Surface enhanced Raman scattering (SERS) is a sensitive and reproducible vibrational spectroscopic technique used to detect and characterize molecules near the surface of noble metals like Au, Ag, Pt, Cu, etc. SERS enhances Raman signals through light-induced plasmonic vibrations occurring on irregular metal surfaces and localized electromagnetic augmentation. To better define nano-scale regions of the Raman signal enhancement, we generated gold nanoparticles with a unique multi-branched configuration along with surface-adsorbed fluorescent reporter molecules. The reporter molecules included a set of near-infra red active fluorescent dyes IR820 (green cyanine, photo electronic dye), DTTC (3, 3'-diethylthiatricarbocyanine iodide) and DTDC (3, 3'- diethylthiadicarbocyanine iodide). We employed a one-pot synthesis method in order to generate a stellate configuration in gold nanoparticles through the reduction of HAuCl4 with Good’s buffer, HEPES, at pH 7.4 and room temperature. A cell viability assay was performed with normal esophageal cells exposed to the multi-branched gold nanoparticles and SERS molecules to assess their toxicity. Our results demonstrate the capacity of multibranched gold nanoparticles linked to Raman reporter molecules to generate distinct signature spectra and, with the exception of the gold nanoparticles functionalized with DTTC, remain non-toxic to normal esophageal cells.
Biofilms are a major source of medical device-associated infections, due to their persistent growth and antibiotic resistance. Recent studies have shown that engineering surface nanoroughness has great potential to create antibacterial surfaces. In addition, stimulation of bacterial metabolism increases the efficacy of antibacterial agents to eradicate biofilms. In this study, we combined the antibacterial effects of nanorough topographies with metabolic stimulation (i.e., fructose metabolites) to further decrease bacterial growth on polyvinyl chloride (PVC) surfaces, without using antibiotics. We showed for the first time that the presence of fructose on nanorough PVC surfaces decreased planktonic bacteria growth and biofilm formation after 24 hours. Most importantly, a 60% decrease was observed on nanorough PVC surfaces soaked in a 10 mM fructose solution compared to conventional PVC surfaces. In this manner, this study demonstrated that bacteria growth can be significantly decreased through the combined use of fructose and nanorough surfaces and thus should be further studied for a wide range of antibacterial applications.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-acquired infections (HAI). HAI affect approximately 1.7 million patients each year in the U.S., resulting in up to 100,000 excess deaths, which leads to an estimated cost of more than $35 billion per year. Hence, there is an urgent clinical need to develop new therapies to reduce infections, without resorting to the use of antibiotics for which bacteria are developing a resistance towards. In this study, we designed superparamagnetic iron-oxide nanoparticles (SPION) to treat antibiotic-resistant biofilms and showed that SPION efficacy increases when they are used in combination with fructose.
Fossil leaves of the Voltziales, an ancestral group of conifers, rank among the most common plant fossils in the Triassic of Gondwana. Even though the foliage taxon Heidiphyllum has been known for more than 150 years, our knowledge of the reproductive organs of these conifers still remains very incomplete. Seed cones assigned to Telemachus have become increasingly well understood in recent decades, but the pollen cones belonging to these Mesozoic conifers are rare. In this contribution we describe the first compression material of a voltzialean pollen cone from Upper Triassic strata of the Transantarctic Mountains. The cone can be assigned to Switzianthus Anderson & Anderson, a genus that was previously assumed to belong to an enigmatic group of pteridosperms from the Triassic Molteno Formation of South Africa. The similarities of cuticle and pollen morphology, together with co-occurrence at all known localities, indicate that Switzianthus most probably represents the pollen organ of the ubiquitous Heidiphyllum/Telemachus plant.
Bacterial infection of bone (called osteomyelitis) is of great concern to the medical community. In addition to bone, numerous medical devices are susceptible to microbial colonization when implanted. These infections are chronic since bacteria form a robust adhesion to surfaces, can be protected by sticky slime matrix (called a biofilm) from the body’s immune system (which would otherwise naturally clear the bacteria), and antibiotic treatments may not resolve such infections (due to antibiotic resistance). Here, the multifunctional properties of magnetic nanoparticles (termed here superparamagnetic iron oxide nanoparticles, or SPION) will be explored for their antibacterial activity, magnetic properties, and drug deliverable properties. This study provides a first step towards the development of a new type of pharmaceutical useful for orthopedic or other device related infections by demonstrating physical (magnetic) control of antibiotics towards bacteria and biofilms.
The presence of living tapeworm increases the rate of hydrolysis of starch by α-amylase in vitro. This effect indicates that ‘membrane digestion’ may be one function of the tegument of tapeworms. The effect varies with the surface area and region of the tapeworm. Fixed tapeworm pieces do not enhance starch hydrolysis. The results may provide evidence both for and against the current explanations of membrane digestion. Some possible mechanisms involved in membrane digestion in tapeworms are considered. The importance of membrane digestion in the physiology of gut parasites and the possibility of its wide occurrence are discussed.
We wish to thank Dr J. Llewellyn for his criticism and advice during the preparation of this manuscript and for providing rats and mice infected with Hymenolepis. We also thank Dr R. A. Thornhill for examining some tapeworm tissue under the electron microscope; also Mr A. Wilson of the Meat Inspection Department of the Birmingham Meat Market for his unfailing co-operation.
Analyses of the height variation of 16-year-old members of the British National Child Development Study revealed a number of biological and social variables which associated with stature. After multiple regression analyses only eight variables, namely social class, family size, tenure (owner occupied or one of several types of rented home), crowding status, number of children sleeping in the bed, region of the country, sex of child, and pubic hair rating, remained significant. The total variation explained by these biosocial variables was 37·5%.
High latitude fossil floras provide an important source of data on past climates, since the plants were living in a strongly seasonal light regime and often existed at the limit of their environmental tolerances. Permian and Triassic rocks from Antarctica have been a rich source of biological information because of the large number of sites that have yielded exquisitely preserved fossil plants. Anatomically preserved plants from several sites in the central Transantarctic Mountains and southern Victoria Land provide a unique source of fossil tree ring data. Samples of wood have come from a variety of sites including fluvial settings, permineralized peat deposits, and forest sites where the trees are preserved in situ (in growth position). The wood exhibits distinct growth rings which have been analyzed for paleoclimate signals. Rings from both Permian and Triassic woods are large, ranging from a few millimeters to several centimeters in width, and represent growth rates that are 1–2 orders of magnitude larger than those at high latitudes today. In addition, the structure of the individual rings differs from that seen in modern temperate rings. The presence of a considerable amount of early wood and only 1–2 cells of latewood suggests that light may have been the limiting factor in the growth of these forest trees. Tree ring data, as well as the level of diversity in the Antarctic Permian and Triassic floras are at variance with the majority of paleoclimate models that have been produced for the region.