We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter traces the cultural history of lotus in the Chinese tradition: from its appearance in The Classic of Poetry and Han dynasty rhapsodies to the exuberant wordplay on ‘lotus’/’love” in the popular songs of the Southern Dynasties, from the flower of carnal desires to a symbol of enlightenment in Buddhism, from the neo-Confucian appropriation of the lotus as a sign of moral purity to the name of the most notorious female character in Chinese fiction, lotus is inscribed with various literary, cultural, social, and religious significance. Focusing on the changing and expanding story of the lotus, this chapter suggests that the lotus is a plant of hybridity, a site of contested meanings, and that its botanical and literary lives are intricately intertwined with the social and cultural histories of China.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
The three-dimensional flow field past an I-shaped dual-step cylinder has been obtained by numerical integration of the Navier–Stokes equations at Reynolds number ($Re_D$) 150. The I-shaped cylinder consisted of two large-diameter (D) cylinders with a small-diameter (d) cylinder in between. With a view to exploring the vortex dynamics and structural loads, simulations were performed for eight different lengths $l$ of the small cylinder, varied from $l/D=10$ to 0.2 for a fixed diameter ratio $D/d=2$. When the length of the small cylinder is sufficiently large, the wake behind the I-shaped cylinder is similar to the wake behind the single-step cylinder (Tian et al., J. Fluid Mech., vol. 891, 2020, A24). As the small cylinder length decreases, the enhanced interactions between the two steps make the present wake deviate from the wake of the single-step cylinder, leading to four different wake modes distinguished by different combinations of vortex cells. The physical formation mechanisms were analysed in terms of the vortex dynamics. Besides the wake flow, the streamwise vortices around the I-shaped step cylinder were also investigated. A pair of edge vortices and a junction vortex were identified for $l/D \geq ~1$. When the gap between the two steps becomes too small, $l/D \leq ~0.2$, the junction vortex disappears, and only a pair of edge vortices exists. Varying the distance between the two steps strongly affects the structural loads (drag and lift) along the I-shaped cylinder. The dependence of the loads on $l/D$ was readily explained by the different wake modes.
Depressive and anxiety disorders constitute a major component of the disease burden of mental disorders in China.
Aims
To comprehensively evaluate the disease burden of depressive and anxiety disorders in China.
Method
The raw data is sourced from the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2021. This study presented the disease burden by prevalence and disability-adjusted life years (DALYs) of depressive and anxiety disorders at both the national and provincial levels in China from 1990 to 2021, and by gender (referred to as 'sex' in the GBD 2021) and age.
Results
From 1990 to 2021, the number of depressive disorder cases (from 34.4 to 53.1 million) and anxiety disorders (from 40.5 to 53.1 million) increased by 54% (95% uncertainty intervals: 43.9, 65.3) and 31.2% (19.9, 43.8), respectively. The age-standardised prevalence rate of depressive disorders decreased by 6.4% (2.9, 10.4), from 3071.8 to 2875.7 per 100 000 persons, while the prevalence of anxiety disorders remained stable. COVID-19 had a significant adverse impact on both conditions. There was considerable variability in the disease burden across genders, age groups, provinces and temporal trends. DALYs showed similar patterns.
Conclusion
The burden of depressive and anxiety disorders in China has been rising over the past three decades, with a larger increase during COVID-19. There is notable variability in disease burden across genders, age groups and provinces, which are important factors for the government and policymakers when developing intervention strategies. Additionally, the government and health authorities should consider the potential impact of public health emergencies on the burden of depressive and anxiety disorders in future efforts.
In certain scenarios, the large footprint of a robot is not conducive to multi-robot cooperative operations. This paper presents a generalized single-loop parallel manipulator with remote center of motion (GSLPM-RCM), which addresses this issue by incorporating a reconfigurable base. The footprint of this RCM manipulator can be adjusted by varying the parameters of the reconfigurable base. First, utilizing configuration evolution, a reconfigurable base is constructed based on the principle of forming RCM motion. Then, according to the modular analysis method, the inverse kinematics of this parallel RCM manipulator is analyzed, and the workspace is also analyzed. Subsequently, the motion/force transmissibility of this RCM manipulator is analyzed by considering its single-loop and multi-degree of freedom characteristics. Leveraging the workspace index and transmissibility indices, dimension optimization of the manipulator is implemented. Finally, the influence of the reconfigurable base on the workspace and the transmissibility performance of the optimized manipulator is studied.
The single pulses of PSR J1921+1419 were examined in detail using high-sensitivity observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST) at a central frequency of 1250 MHz. The high-sensitivity observations indicate that the pulsar exhibits two distinct emission modes, which are classified as strong and weak modes based on the intensity of the single pulses. In our observations, the times spent in both modes are nearly equal, and each is about half of the total observation time. The minimum duration of both modes is $1\,P$ and the maximum duration is $13\,P$, where P is the pulsar spin period. Additionally, the mean intensity of the weak mode is less than half of that of the strong mode. Notably, the switching between these modes demonstrates a clear quasi-periodicity with a modulation period of approximately $10 \pm 2\,P$. An analysis of the polarisation properties of both modes indicates that they originate from the same region within the magnetosphere of the pulsar. Finally, the viewing geometry was analysed based on the kinematical effects.
Aircraft with bio-inspired flapping wings that are operated in low-density atmospheric environments encounter unique challenges associated with the low density. The low density results in the requirement of high operating velocities of aircraft to generate sufficient lift resulting in significant compressibility effects. Here, we perform numerical simulations to investigate the compressibility effects on the lift generation of a bio-inspired wing during hovering flight using an immersed boundary method. The aim of this study is to develop a scaling law to understand how the lift is influenced by the Reynolds and Mach numbers, and the associated flow physics. Our simulations have identified a critical Mach number of approximately $0.6$ defined by the average wing-tip velocity. When the Mach number is lower than 0.6, compressibility does not have significant effects on the lift or flow fields, while when the Mach number is greater than $0.6$, the lift coefficient decreases linearly with increasing Mach number, due to the drastic change in the pressure on the wing surface caused by unsteady shock waves. Moreover, the decay rate is dependent on the Reynolds number and the angle of attack. Based on these observations, we propose a scaling law for the lift of a hovering flapping wing by considering compressible and viscous effects, with the scaled lift showing excellent collapse.
The Eastern population of the Lesser White-fronted Goose (EPLWFG) Anser erythropus is shared between Russia and China. The summer range of the EPLWFG has been recognised as a continuous area extending from the Olenyok River in the west to the Anadyr River in the east and northwards from 64°N. The aim of this study was to provide information on breeding behaviour; nest-sites, nesting habitats, and time of nesting; nesting success; timing of summer movements including moult migration; moult timing, duration, and moulting habitats; site fidelity; and the effect of human presence. To accomplish this, we combined the results from field surveys with GPS/GSM tracking. A total of 30 summer tracks from 19 individual EPLWFG were analysed. We estimated breeding propensity in 93.8% of adult LWFG, and this factor did not seem to depend on breeding success in the previous season. Reproductive success was 13.3% in all nesting attempts. Non-breeders arrived three-week later and departed a week earlier. The EPLWFG are highly mobile during the summer. The core moulting site for the entire EPLWFG was discovered by this study and is located along the lower reaches of the San-Yuryakh and Kyuanekhtyakh rivers flowing towards the Omulyakhskaya Bay of the East Siberian Sea. The EPLWFG flightless period was 24.8 ± 2.8 days. A part of failured EPLWFG (43.7 %) migrated back to its early summer breeding/staging site after having completed moult. The strong site fidelity (100%) of adult birds to both nesting and moulting sites promotes the formation of local breeding populations, which could be considered conservation units if genetic studies support this differentiation. The EPLWFG selects the remotest and least human-accessible area for their remigial moult, and the main site was discovered with the help of tracking.
The multi-colour complete light curves and low-resolution spectra of two short period eclipsing Am binaries V404 Aur and GW Gem are presented. The stellar atmospheric parameters of the primary stars were derived through the spectra fitting. The observed and TESS-based light curves of them were analysed by using the Wilson-Devinney code. The photometric solutions suggest that both V404 Aur and GW Gem are semi-detached systems with the secondary component filling its critical Roche Lobe, while the former should be a marginal contact binary. The $O-C$ analysis found that the period of V404 Aur is decreasing at a rate of $dP/dt=-1.06(\pm0.01)\times 10^{-7}\,\mathrm{d}\,\mathrm{ yr}^{-1}$, while the period of GW Gem is increasing at $dP/dt=+2.41(\pm0.01)\times 10^{-8} \mathrm{d}\,\mathrm{yr}^{-1}$. The period decrease of V404 Aur may mainly be caused by the combined effects of the angular momentum loss (AML) via an enhanced stellar wind of the more evolved secondary star and mass transfer between two components. The period increase of GW Gem supports the mass transfer from the secondary to the primary. Both targets may be in the broken contact stage predicted by the thermal relaxation oscillations theory and will eventually evolve to the contact stage. We have collected about 54 well-known eclipsing Am binaries with absolute parameters from the literature. The relations of these parameters are summarised. There are some components that have a higher degree of evolution. The majority of their hydrogen shell may have been stripped away and the stellar internal layer exposed. The accretion processes from such evolved components may be very important for the formation of Am peculiarity in binaries.
Rapid advancements in high-energy ultrafast lasers and free electron lasers have made it possible to obtain extreme physical conditions in the laboratory, which lays the foundation for investigating the interaction between light and matter and probing ultrafast dynamic processes. High temporal resolution is a prerequisite for realizing the value of these large-scale facilities. Here, we propose a new method that has the potential to enable the various subsystems of large scientific facilities to work together well, and the measurement accuracy and synchronization precision of timing jitter are greatly improved by combining a balanced optical cross-correlator (BOC) with near-field interferometry technology. Initially, we compressed a 0.8 ps laser pulse to 95 fs, which not only improved the measurement accuracy by 3.6 times but also increased the BOC synchronization precision from 8.3 fs root-mean-square (RMS) to 1.12 fs RMS. Subsequently, we successfully compensated the phase drift between the laser pulses to 189 as RMS by using the BOC for pre-correction and near-field interferometry technology for fine compensation. This method realizes the measurement and correction of the timing jitter of ps-level lasers with as-level accuracy, and has the potential to promote ultrafast dynamics detection and pump–probe experiments.
Survey data typically contain many variables. Structural equation modeling (SEM) is commonly used in analyzing such data. The most widely used statistic for evaluating the adequacy of a SEM model is TML, a slight modification to the likelihood ratio statistic. Under normality assumption, TML approximately follows a chi-square distribution when the number of observations (N) is large and the number of items or variables (p) is small. However, in practice, p can be rather large while N is always limited due to not having enough participants. Even with a relatively large N, empirical results show that TML rejects the correct model too often when p is not too small. Various corrections to TML have been proposed, but they are mostly heuristic. Following the principle of the Bartlett correction, this paper proposes an empirical approach to correct TML so that the mean of the resulting statistic approximately equals the degrees of freedom of the nominal chi-square distribution. Results show that empirically corrected statistics follow the nominal chi-square distribution much more closely than previously proposed corrections to TML, and they control type I errors reasonably well whenever N≥max(50,2p). The formulations of the empirically corrected statistics are further used to predict type I errors of TML as reported in the literature, and they perform well.
Simulating complex gas flows from turbulent to rarefied regimes is a long-standing challenge, since turbulence and rarefied flow represent contrasting extremes of computational aerodynamics. We propose a multiscale method to bridge this gap. Our method builds upon the general synthetic iterative scheme for the mesoscopic Boltzmann equation, and integrates the $k$–$\omega$ model in the macroscopic synthetic equation to address turbulent effects. Asymptotic analysis and numerical simulations show that the macroscopic–mesoscopic coupling adaptively selects the turbulence model and the laminar Boltzmann equation. The multiscale method is then applied to opposing jet problems in hypersonic flight surrounding by rarefied gas flows, showing that the turbulence could cause significant effects on the surface heat flux, which cannot be captured by the turbulent model nor the laminar Boltzmann solution alone. This study provides a viable framework for advancing understanding of the interaction between turbulent and rarefied gas flows.
Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct advantages and limitations. In vivo OCT offers rapid, noninvasive imaging but can suffer from clarity issues and motion artifacts, while ex vivo confocal microscopy, providing high-resolution, cellular-detailed color images, is invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired in vivo OCT to ex vivo confocal microscopy images. This marks the first attempt to exploit the inherent 3D information of OCT and translate it into the rich, detailed color domain of confocal microscopy. We also introduce a unique dataset, OCT2Confocal, comprising mouse OCT and confocal retinal images, facilitating the development of and establishing a benchmark for cross-modal image translation research. Our model has been evaluated both quantitatively and qualitatively, achieving Fréchet inception distance (FID) scores of 0.766 and Kernel Inception Distance (KID) scores as low as 0.153, and leading subjective mean opinion scores (MOS). Our model demonstrated superior image fidelity and quality with limited data over existing methods. Our approach effectively synthesizes color information from 3D confocal images, closely approximating target outcomes and suggesting enhanced potential for diagnostic and monitoring applications in ophthalmology.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Investigate the prevalence of adverse childhood experience (ACE) and intimate partner violence (IPV) using a large representative Chinese sample, explore the association mechanism between ACE and adult exposure to IPV and to examine gender differences.
Methods
A total of 21,154 participants were included in this study. The ACE scale was used to assess participants’ exposure to ACE before the age of 18. Participants were evaluated for IPV experienced after the age of 18 using the IPV Scale. Logistic regression model was used to analyse the association between ACE and the risk of IPV exposure in adulthood. Principal component analysis was used to extract the main patterns of ACEs in the Chinese population. Network analyses were employed to identify the most critical types of ACE and IPV, analyse the association mechanisms between ACEs and IPVs, explore gender differences in this association and compare gender differences in the severity of IPVs experienced in adulthood.
Results
Participants with at least one ACE event faced a 215.5% higher risk of IPV compared to those without ACE experiences. In population-wide and gender-specific networks, The ACE and IPV nodes with the highest expected influence are ‘ACE1 (Verbal abuse + physical abuse pattern)’ and ‘IPV5 (Partner compares me to other people and blatantly accuses me, making me feel embarrassed and unsure of myself)’. Positive correlations were found between ‘ACE1 (Verbal abuse + physical abuse pattern)’–‘IPV3 (Partner does not care about me when I am in bad shape [not feeling well or in a bad mood])’, ‘ACE4 (Violent treatment of mother or stepmother + criminal acts in the family pattern)’–‘IPV1 (Partner has ever directly assaulted or hurt me with the help of an instrument)’ and ‘ACE2 (Exposure to sexual assault pattern)’–‘IPV2 (Partner would have physical or sexual contact with me against my will)’, which were the three edges with the highest edge weight values in the ACE pattern and IPV edges. ‘ACE1 (Verbal abuse + physical abuse pattern)’–‘IPV3 (Partner does not care about me when I am in bad shape [not feeling well or in a bad mood])’, ‘ACE2 (Exposure to sexual assault pattern)’–‘IPV2 (Partner would have physical or sexual contact with me against my will)’, ‘ACE4 (Violent treatment of mother or stepmother + criminal acts in the family pattern)’–‘IPV1 (Partner has ever directly assaulted or hurt me with the help of an instrument)’ in the male network and ‘ACE1 (Verbal abuse + physical abuse pattern)’–‘IPV3 (Partner does not care about me when I am in bad shape [not feeling well or in a bad mood])’, ‘ACE4 (Violent treatment of mother or stepmother + criminal acts in the family pattern)’–‘IPV1 (Partner has ever directly assaulted or hurt me with the help of an instrument)’, ‘ACE3 (Substance abuse + mental illness + violent treatment of mother or stepmother pattern)’–‘IPV1 (Partner has ever directly assaulted or hurt me with the help of an instrument)’ in the female network are the three edges with the highest edge weights among the ACE and IPV edges in their networks, respectively, all displaying positive correlations. The strength of ‘IPV3 (Partner does not care about me when I am in bad shape [not feeling well or in a bad mood])’ was higher in the male network than in the female (male = 0.821, female = 0.755, p = 0.002). The edge weight values of ‘ACE3 (Substance abuse + mental illness + violent treatment of mother or stepmother pattern)’–‘IPV1 (Partner has ever directly assaulted or hurt me with the help of an instrument)’ (P = 0.043) and ‘ACE4 (Violent treatment of mother or stepmother + criminal acts in the family pattern)’–‘IPV1 (Partner has ever directly assaulted or hurt me with the help of an instrument)’ (P = 0.032) are greater for females than males.
Conclusions
The most common type of ACE in the Chinese population is verbal violence combined with physical violence, while the predominant type of IPV is verbal violence. Males experience higher levels of emotional neglect from their partners compared to females. The association between witnessing physical violence in childhood and experiencing physical violence from a partner in adulthood is stronger in females than in males. The homotypic continuum between ACE and IPV is a crucial mechanism in understanding intergenerational domestic violence. Enhance economic and educational levels, promote correct parenting concepts, reduce child abuse, establish accurate perceptions of intimate relationships, eliminate shame about violence and further advance gender equality. These efforts are vital for reducing IPV prevalence and breaking the cycle of violence in victims’ lives.
The last two chapters of this volume, appropriately, deal with endpoints in the form of tombs in ancient China and ancient Rome. Both chapters, however, make it abundantly clear that tombs should also be studied as points of beginning, namely, as sites where, through the performance of funerals and other rituals, the living renegotiated their own social relationships after a death in their community. Tian Tian’s contribution has a laser-sharp focus on burial money. Starting in Western Han, burial money featured prominently among other grave goods: huge quantities of money were hauled to the burial site – she speaks of two cartloads full in case of one elite tomb – to be subsequently, after a public reading of the funerary-objects lists, buried in the tomb. In Rome, burial coins spread together with the Roman empire, but never in quantities as large as in the case of Han tombs. Moreover, interpreting Roman burial coins remains difficult given that the explanation provided in literary sources (that the deceased needed one coin to successfully cross the River Styx to the underworld) is unsatisfactory to account for the richness of the archaeological record. (For Han China, the funerary-objects lists that were placed in the tomb really help when it comes to categorizing and interpreting the burial coins.) In the Roman case there is little evidence that money played a role in the way families sought to display their wealth and status as they publicly remembered their dead; in contrast, in Han China (and beyond) gifts of money by individuals or other families to the family of the deceased in order to defray funeral expenses were a prominent way to create and confirm communities; as Tian Tian reveals, local villagers even formed private associations (dan) especially for that purpose.
Expert drivers possess the ability to execute high sideslip angle maneuvers, commonly known as drifting, during racing to navigate sharp corners and execute rapid turns. However, existing model-based controllers encounter challenges in handling the highly nonlinear dynamics associated with drifting along general paths. While reinforcement learning-based methods alleviate the reliance on explicit vehicle models, training a policy directly for autonomous drifting remains difficult due to multiple objectives. In this paper, we propose a control framework for autonomous drifting in the general case, based on curriculum reinforcement learning. The framework empowers the vehicle to follow paths with varying curvature at high speeds, while executing drifting maneuvers during sharp corners. Specifically, we consider the vehicle’s dynamics to decompose the overall task and employ curriculum learning to break down the training process into three stages of increasing complexity. Additionally, to enhance the generalization ability of the learned policies, we introduce randomization into sensor observation noise, actuator action noise, and physical parameters. The proposed framework is validated using the CARLA simulator, encompassing various vehicle types and parameters. Experimental results demonstrate the effectiveness and efficiency of our framework in achieving autonomous drifting along general paths. The code is available at https://github.com/BIT-KaiYu/drifting.