This paper develops a method for performing inference using spatially dependent data. We consider test statistics formed using nonparametric covariance matrix estimators that account for heteroskedasticity and spatial correlation (spatial HAC). We provide distributions of commonly used test statistics under “fixed-b” asymptotics, in which HAC smoothing parameters are proportional to the sample size. Under this sequence, spatial HAC estimators are not consistent but converge to nondegenerate limiting random variables that depend on the HAC smoothing parameters, the HAC kernel, and the shape of the spatial region in which the data are located. We illustrate the performance of the “fixed-b” approximation in the spatial context through a simulation example.