We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A complex system is composed of many elements that interact with each other and their environment. The term emergence is used to describe how the large-scale features of the complex system arise from interactions between the components, and these system-level features are called emergent phenomena. This chapter reviews the multidisciplinary study of complex systems in physics, biology, and social sciences. This chapter reviews three topics: first, research on how people learn how to think about complex systems; second, how learning environments themselves can be analyzed as complex systems; and finally, how the analytic methods of complexity science – such as computer modeling – can be applied to the learning sciences. The chapter summarizes challenges and future opportunities for helping students learn about complex systems and for research in the learning sciences that considers educational systems to be complex phenomena.