We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A construction and exploitation of a comparatively large I photodissociation laser system (Perun) is reported. This system was constructed in cooperation between the Institute of Physics of Czechoslovak Academy of Science in Prague and the Lebedev Institute of Physics of Soviet Academy of Science in Moscow. The laser produces subnanosecond pulses of maximum 50 J and 0·5 ns in duration. Although the pumping time by Xe flashlamps is long enough for an acoustic disturbance released in the active medium to introduce an optical inhomogeneity across the whole cross section of the laser tube, the radiation can be focused in a focal spot of a power density exceeding 1014 W/cm2, enough for meaningful laser target experiments both for a laser plasma production or a modification of solid surfaces. The repetition time of the shots is about 10 min.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.